Multi-entity Bayesian Networks for Treasuring the Intangible Cultural Heritage

Giannis Chantas, Spiros Nikolopoulos, Ioannis Kompatsiaris

2014

Abstract

In this paper, we propose the use of Multi-entity Bayesian networks (MEBNs) for modeling the knowledge and analyzing the content pertaining to the domain of Intangible Cultural Heritage (ICH). MEBNs provide a rigorous knowledge representation framework in conjunction with reasoning and probabilistic inference capabilities. There are mainly two reasons motivating the use of MEBNs in the domain of ICH. The first is that MEBNs extend first-order logic with the ability to model uncertainty. The second reason is the capability of MEBN to adapt to specific situations by providing custom, situation specific Bayesian networks. Finally, we use an example to demonstrate the potential efficiency of MEBNs in the domain of ICH.

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. F. (2003). The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press.
  2. Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc.
  3. Davis, E. (1990). Representations of Commonsense Knowledge. San Mateo, California: Morgan Kaufmann.
  4. Doerr, M. (2003). The cidoc conceptual reference model: an ontological approach to semantic interoperability of metadata. AI Magazine, 69:(3): 75-92.
  5. Ioannidis, K. E. R. Y. (2011). A labanotation based ontology for representing dance movement. In 9th International Gesture Workshop, Athens, Greece, May.
  6. Koller, D. and Pfeffer, A. (1997). Object-oriented bayesian networks. In Uncertainty in Artificial Intelligence: Proceedings of the Thirteenth Conference, San Francisco, CA: Morgan Kaufmann.
  7. Laskey, K. B. (2008). Mebn: A language for first-order bayesian knowledge bases. Artificial Intelligence, 172:(2-3), 140178.
  8. Mallik, A., Chaudhuri, S., and Ghosh, H. (2011). Nrityakosha: Preserving the intangible heritage of indian classical dance. ACM Journal on Computing and Cultural Heritage, 4:(3), 11.
  9. Mallik, A., Pasumarthi, A. P., and Chaudhury, S. (2008). Multimedia ontology learning for automatic annotation and video browsing. In 1st ACM International Conference on Multimedia Information Retrieval (MIR'08), New York,.
  10. Milch, B. and Russell, S. (2007). First-order probabilistic languages: Into the unknown. In In Proc. of the 16th International Conference on Inductive Logic Programming, pages 10-24.
  11. Pfeffer, A. (2000). Probabilistic Reasoning for Complex Systems. Stanford, CA, Stanford University.
  12. Staab, S. and R. Studer, e. (2009). Handbook on Ontologies, chapter 23. International Handbooks on Information Systems, Springer.
  13. UNESCO (2013). Convention of the safeguarding of intangible cultural heritage of unesco, 2003. URL: http://www.unesco.org/culture/ich/index.php.
  14. Whittaker, J. (2009). Graphical models in applied multivariate statistics. Wiley Publishing.
Download


Paper Citation


in Harvard Style

Chantas G., Nikolopoulos S. and Kompatsiaris I. (2014). Multi-entity Bayesian Networks for Treasuring the Intangible Cultural Heritage . In Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: IAMICH, (VISIGRAPP 2014) ISBN 978-989-758-004-8, pages 796-802. DOI: 10.5220/0004875407960802


in Bibtex Style

@conference{iamich14,
author={Giannis Chantas and Spiros Nikolopoulos and Ioannis Kompatsiaris},
title={Multi-entity Bayesian Networks for Treasuring the Intangible Cultural Heritage},
booktitle={Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: IAMICH, (VISIGRAPP 2014)},
year={2014},
pages={796-802},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004875407960802},
isbn={978-989-758-004-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Computer Vision Theory and Applications - Volume 2: IAMICH, (VISIGRAPP 2014)
TI - Multi-entity Bayesian Networks for Treasuring the Intangible Cultural Heritage
SN - 978-989-758-004-8
AU - Chantas G.
AU - Nikolopoulos S.
AU - Kompatsiaris I.
PY - 2014
SP - 796
EP - 802
DO - 10.5220/0004875407960802