An Evolutionary Algorithm for Graph Planarisation by Vertex Deletion
Rodrigo Lankaites Pinheiro, Ademir Aparecido Constantino, Candido F. X. de Mendonça, Dario Landa-Silva
2014
Abstract
A non-planar graph can only be planarised if it is structurally modified. This work presents a new heuristic algorithm that uses vertices deletion to modify a non-planar graph in order to obtain a planar subgraph. The proposed algorithm aims to delete a minimum number of vertices to achieve its goal. The vertex deletion number of a graph G = (V, E) is the smallest integer k ≥ 0 such that there is an induced planar subgraph of G obtained by the removal of k vertices of G. Considering that the corresponding decision problem is NP-complete and an approximation algorithm for graph planarisation by vertices deletion does not exist, this work proposes an evolutionary algorithm that uses a constructive heuristic algorithm to planarise a graph. This constructive heuristic has time complexity of O(n + m), where m = |V| and n = |E|, and is based on the PQ-trees data structure and on the vertex deletion operation. The algorithm performance is verified by means of case studies.
References
- Battista, G. D. and Nardelli, E. (1988). Hierarchies and planarity theory. IEEE Transactions on Systems, Man, and Cybernetics, (18):10351046.
- Booth, K. S. and Lueker, G. S. (1976). Testing for the consecutive ones property, interval graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System Sciences, 13(3):335 - 379.
- Chiba, T., Nishioka, I., and Shirakawa, I. (1979). An algorithm of maximal planarization of graphs. In Proc. 1979 IEEE Symp. on Circuits and Sys, pages 649-652.
- Constantino, A. A., de Mendonc¸a, C. F. X., and Pinheiro, R. L. (2011). Um algoritmo heurstico de complexidade linear para planarizac¸o de grafos por remoc¸o de vrtices. In In Proc. XLIII Simpósio Brasileiro de Pesquisa Operacional, XLIII SBPO, pages 1-11.
- de Figueiredo, C. M. H., Faria, L., and Mendonc¸a, C. F. X. (1999). Optimal node-degree bounds for the complexity of nonplanarity parameters. In Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms, SODA 7899, pages 887-888.
- Eades, P. and de Mendonc¸a, C. F. X. (1993). Heuristics for planarization by vertex splitting. In In Proc. ALCOM Int. Workshop on Graph Drawing, GD'93, pages 83- 85.
- Even, S. (2011). Graph Algorithms. Cambridge University Press, New York, NY, USA, 2nd edition.
- Even, S. and Tarjan, R. E. (1976). Computing an stnumbering. Theoretical Computer Science, 2(3):339 - 344.
- Faria, L., de Figueiredo, C., and Mendonc¸a, C. (2001a). Splitting number is np-complete. Discrete Applied Mathematics, 108(12):65 - 83. ¡ce:title¿Workshop on Graph Theoretic Concepts in Computer Science¡/ce:title¿.
- Faria, L., de Figueiredo, C. M. H., and de Mendonc¸a Neto, C. F. X. (2001b). On the complexity of the approximation of nonplanarity parameters for cubic graphs. pages 18-21.
- Mendonc¸a, C. F., and Stolfi, J. (2006). On maximum planar induced subgraphs. Discrete Applied Mathematics, 154(13):1774 - 1782.
- Fisher, G. and Wing, O. (1966). Computer recognition and extraction of planar graphs from the incidence matrix. Circuit Theory, IEEE Transactions on, 13(2):154- 163.
- Garey, M. and Johnson, D. (1983). Crossing number is npcomplete. SIAM Journal on Algebraic Discrete Methods, 4(3):312-316.
- Gibbons, A. (1985). Algorithmic Graph Theory. Cambridge University Press.
- Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.
- Jayakumar, R., Thulasiraman, K., and Swamy, M. (1989). O(n2) algorithms for graph planarization. ComputerAided Design of Integrated Circuits and Systems, IEEE Transactions on, 8(3):257-267.
- Lempel, A., Even, S., and Cederbaum, I. (1967). An algorithm for planarity testing of graphs. In Theory of Graphs, International Symposium, pages 215-232.
- Liu, P. C. and Geldmacher, R. C. (1977). On the deletion of nonplanar edges of a graph. In Proc. 10th S-E Conf. Combinatorics, Graph Theory, and Computing, Boca, pages 727-738.
- Marek-Sadowska, M. (1978). Planarization algorithms for integrated circuits engineering. In in Proc. IEEE International Symposium on Circuits and Systems, pages 919-923.
- Ozawa, T. and Takahashi, H. (1981). A graph-planarization algorithm and its applications to random graphs. In in Graph Theory and Algorithms, Lecture Notes in Computer Science, pages 95-107. Springer-Verlag.
- Pasedach, K. (1976). Criterion and algorithms for determination of bipartite subgraphs and their application to planarization of graphs. Graphen-Sprach. Algorithm. Graphen, 1. Fachtag. graphen-theor. Konz. Inf., Berlin(West) 1975, 175-183 (1976).
- Pinheiro, R. L., Constantino, A. A., and de Mendonc¸a and, C. F. X. (2012). Um algoritmo evolutivo para planarizac¸a˜o de grafos por remoc¸a˜o de vértices. In In Proc. XLIV Simpósio Brasileiro de Pesquisa Operacional, XLIV SBPO, pages 1-12.
- Robertson, N. and Seymour, P. (1995). Graph minors .xiii. the disjoint paths problem. Journal of Combinatorial Theory, Series B, 63(1):65 - 110.
- Yannakakis, M. (1978). Node-and edge-deletion npcomplete problems. In Proceedings of the tenth annual ACM symposium on Theory of computing, STOC 7878, pages 253-264, New York, NY, USA. ACM.
Paper Citation
in Harvard Style
Lankaites Pinheiro R., Constantino A., F. X. de Mendonça C. and Landa-Silva D. (2014). An Evolutionary Algorithm for Graph Planarisation by Vertex Deletion . In Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-758-027-7, pages 464-471. DOI: 10.5220/0004883704640471
in Bibtex Style
@conference{iceis14,
author={Rodrigo Lankaites Pinheiro and Ademir Aparecido Constantino and Candido F. X. de Mendonça and Dario Landa-Silva},
title={An Evolutionary Algorithm for Graph Planarisation by Vertex Deletion},
booktitle={Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2014},
pages={464-471},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004883704640471},
isbn={978-989-758-027-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 16th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - An Evolutionary Algorithm for Graph Planarisation by Vertex Deletion
SN - 978-989-758-027-7
AU - Lankaites Pinheiro R.
AU - Constantino A.
AU - F. X. de Mendonça C.
AU - Landa-Silva D.
PY - 2014
SP - 464
EP - 471
DO - 10.5220/0004883704640471