Setting the Criteria for the MATHOV + QAVS Tool - Qualitative and Quantitative Aspects for Wearable Fall Prediction
Mario Sáenz Espinoza, Miguel Velhote Correia
2014
Abstract
For the first time in history, the world shows a clear trend towards aging. This poses an intrinsic hazard for the ever growing population, which becomes more vulnerable to common age-related illnesses and conditions. One of the most serious risks elders face is falling, as it is responsible for countless admissions to geriatric care institutions and thousands of deaths each year. In an effort to improve elders’ safety and quality of life many groups have address the fall prevention issue, coming to several different results as of what variables are the most important to consider in a fall prediction tool. These variables range from qualitative aspects (history of falls, dementia, use of medication, etc.) to quantitative ones (total walked distance per day, walking cadence, center of mass, etc.), but none of them per se seems to deliver a definite and complete answer to the problem at hand. The paper herein aims to present a new hybrid approach, which combines both the highest co-related qualitative and quantitative biovariables in a single tool: the MATHOV + QAVS, which is proposed as a new fall assessment screening tool and eventually as baseline criteria for a complete elder fall prediction system.
References
- Aizen, E. and Zlotver, E. (2013). Prediction of falls in rehabilitation and acute care geriatric setting. Journal of Clinical Gerontology and Geriatrics.
- Bongue, B., Dupr, C., Beauchet, O., Rossat, A., Fantino, B., and Colvez, A. (2011). A screening tool with five risk factors was developed for fall-risk prediction in community-dwelling elderly. Journal of Clinical Epidemiology, 64(10):1152-1160.
- Cuaya, G., Mun˜oz Meléndez, A., Nún˜ez Carrera, L., Morales, E. F., Quin˜ones, I., Pérez, A. I., and Alessi, A. (2013). A dynamic bayesian network for estimating the risk of falls from real gait data. Medical & Biological Engineering & Computing, 51(1-2):29-37.
- Deandrea, S., Lucenteforte, E., Bravi, F., Foschi, R., La Vecchia, C., and Negri, E. (2010). Risk factors for falls in community-dwelling older people. Epidemiology, 21(5):658-668.
- Demura, S., Sato, S., Shin, S., and Uchiyama, M. (2012). Setting the criterion for fall risk screening for healthy community-dwelling elderly. Archives of Gerontology and Geriatrics, 54(2):370-373.
- Espinoza, M. S. (2013). Wearable fall prediction system: Preliminary considerations. Technical report, Faculty of Engineering, University of Porto (FEUP), Portugal.
- Feil, M. and Gardner, L. A. (2012). Falls risk assessment: A foundational element of falls prevention programs. Pennsylvania Patient Safety Advisory, 9(3):73-81.
- Fong, K. N., Siu, A. M., Yeung, K. A., Cheung, S. W., and Chan, C. C. (2011). Falls among the communityliving elderly people in hong kong: A retrospective study. Hong Kong Journal of Occupational Therapy, 21(1):33-40.
- Gama, A. and Gómez, A. (2008). Factores de riesgo de caídas en ancianos: revisión sistemática. Revista de Saúde Pública, 42(5):946-956.
- Giansanti, D., Maccioni, G., Cesinaro, S., Benvenuti, F., and Macellari, V. (2008a). Assessment of fall-risk by means of a neural network based on parameters assessed by a wearable device during posturography. Medical Engineering & Physics, 30(3):367-372.
- Giansanti, D., Macellari, V., and Maccioni, G. (2008b). New neural network classifier of fall-risk based on the mahalanobis distance and kinematic parameters assessed by a wearable device. Physiological Measurement, 29(3):N11-N19.
- Gietzelt, M., Nemitz, G., Wolf, K.-H., Schwabedissen, H. M. Z., Haux, R., and Marschollek, M. (2009). A clinical study to assess fall risk using a single waist accelerometer. Informatics for Health and Social Care, 34(4).
- Greene, B. R., Donovan, A. O., Romero-Ortuno, R., Cogan, L., Ni Scanaill, C., and Kenny, R. A. (2010). Quantitative falls risk assessment using the timed up and go test. IEEE Transactions on Biomedical Engineering, 57(12):2918-2926.
- Grundstrom, A. C., Guse, C. E., and Layde, P. M. (2012). Risk factors for falls and fall-related injuries in adults 85 years of age and older. Archives of Gerontology and Geriatrics, 54(3):421-428.
- Heinrich, S., Rapp, K., Rissmann, U., Becker, C., and König, H.-H. (2010). Cost of falls in old age: a systematic review. Osteoporosis International, 21(6):891-902.
- Karlsson, M. K., Ribom, E., Nilsson, J.-r., Ljunggren, O ., Ohlsson, C., Mellström, D., Lorentzon, M., Mallmin, H., Stefanick, M., Lapidus, J., Leung, P. C., Kwok, A., Barrett-Connor, E., Orwoll, E., and Rosengren, B. E. (2012). Inferior physical performance tests in 10,998 men in the MrOS study is associated with recurrent falls. Age and Ageing.
- Kinematix (2013). WalkinSense User's Manual. Porto, Portugal. www.kinematix.pt.
- Lafargue, G., Nol, M., and Luyat, M. (2013). In the elderly, failure to update internal models leads to overoptimistic predictions about upcoming actions. PLoS ONE, 8(1):e51218.
- Lai, D. T., Begg, R. K., Taylor, S., and Palaniswami, M. (2008). Detection of tripping gait patterns in the elderly using autoregressive features and support vector machines. Journal of Biomechanics, 41(8):1762- 1772.
- Liu, Y., Redmond, S., Wang, N., Blumenkron, F., Narayanan, M., and Lovell, N. (2011). Spectral analysis of accelerometry signals from a directedroutine for falls-risk estimation. IEEE Transactions on Biomedical Engineering, 58(8):2308-2315.
- Lord, S. R., Tiedemann, A., Chapman, K., Munro, B., Murray, S. M., Gerontology, M., Ther, G. R., and Sherrington, C. (2005). The effect of an individualized fall prevention program on fall risk and falls in older people: A randomized, controlled trial. Journal of the American Geriatrics Society, 53(8):12961304.
- Marschollek, M., Nemitz, G., Gietzelt, M., Wolf, K. H., Schwabedissen, H. M. z., and Haux, R. (2009). Predicting in-patient falls in a geriatric clinic. Zeitschrift fr Gerontologie und Geriatrie, 42(4):317-322.
- Marschollek, M., Wolf, K.-H., Gietzelt, M., Nemitz, G., Meyer zu Schwabedissen, H., and Haux, R. (2008). Assessing elderly persons' fall risk using spectral analysis on accelerometric data - a clinical evaluation study. In 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), 2008., pages 3682-3685.
- McGrath, D., Doheny, E., Walsh, L., McKeown, D., Cunningham, C., Crosby, L., Kenny, R., Stergiou, N., Caulfield, B., and Greene, B. (2012). Taking balance measurement out of the laboratory and into the home: Discriminatory capability of novel centre of pressure measurement in fallers and non-fallers. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3296-3299.
- Menz, H. B., Lord, S. R., and Fitzpatrick, R. C. (2003). Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait & Posture, 18(1):35-46.
- Muir, S., Berg, K., Chesworth, B., Klar, N., and Speechley, M. (2010). Application of a fall screening algorithm stratified fall risk but missed preventive opportunities in community-dwelling older adults: A prospective study. Journal of Geriatric Physical Therapy, 33(4):165-172.
- Narayanan, M., Redmond, S., Scalzi, M., Lord, S., Celler, B., and Lovell, N. (2010). Longitudinal falls-risk estimation using triaxial accelerometry. IEEE Transactions on Biomedical Engineering, 57(3):534-541.
- Neumann, L., Hoffmann, V. S., Golgert, S., Hasford, J., and Renteln-Kruse, W. v. (2013). In-hospital fall-risk screening in 4,735 geriatric patients from the LUCAS project. The journal of nutrition, health & aging, 17(3):264-269.
- Neyens, J. C., Dijcks, B. P., Haastregt, J. C. v., Witte, L. P. d., Heuvel, W. J. v. d., Crebolder, H. F., and Schols, J. M. (2006). The development of a multidisciplinary fall risk evaluation tool for demented nursing home patients in the netherlands. BMC Public Health, 6(1):74. PMID: 16551348.
- Oliver, D., Britton, M., Seed, P., Martin, F. C., and Hopper, A. H. (1997). Development and evaluation of evidence based risk assessment tool (STRATIFY) to predict which elderly inpatients will fall: case-control and cohort studies. BMJ : British Medical Journal, 315(7115):1049-1053. PMID: 9366729 PMCID: PMC2127684.
- Peel, N. M. (2011). Epidemiology of falls in older age. Canadian Journal on Aging/La Revue canadienne du vieillissement, 30(01):7-19.
- Perry, B. (1982). Falls among the elderly: a review of the methods and conclusions of epidemiologic studies. Journal of the American Geriatrics Society, 30(6):367-371. PMID: 7077016.
- Robinovitch, S. N., Feldman, F., Yang, Y., Schonnop, R., Leung, P. M., Sarraf, T., Sims-Gould, J., and Loughin, M. (2013). Video capture of the circumstances of falls in elderly people residing in long-term care: an observational study. The Lancet, 381(9860):47-54.
- Rosengren, B., Ribom, E. L., Nilsson, J.-r., Ljunggren, O., Ohlsson, C., Mellström, D., Lorentzon, M., Mallmin, H., Stefanick, M. L., Lapidus, J., Leung, P. C., Kwok, A., Barrett-Connor, E., Orwoll, E., and Karlsson, M. K. (2011). There is in elderly men a group difference between fallers and non-fallers in physical performance tests. Age and Ageing, 40(6):744-749.
- Russell, M. A., Hill, K. D., Day, L. M., Blackberry, I., Gurrin, L. C., and Dharmage, S. C. (2009). Development of the falls risk for older people in the community (FROP-Com) screening tool*. Age and Ageing, 38(1):40-46.
- Shany, T., Redmond, S., Narayanan, M., and Lovell, N. (2012a). Sensors-based wearable systems for monitoring of human movement and falls. IEEE Sensors Journal, 12(3):658 -670.
- Shany, T., Redmond, S. J., Marschollek, M., and Lovell, N. H. (2012b). Assessing fall risk using wearable sensors: a practical discussion. Zeitschrift fr Gerontologie und Geriatrie, 45(8):694-706.
- Sherrington, C., Lord, S. R., Close, J. C., Barraclough, E., Taylor, M., O'Rourke, S., Kurrle, S., Tiedemann, A., Cumming, R. G., and Herbert, R. D. (2010). Development of a tool for prediction of falls in rehabilitation settings (Predict FIRST): a prospective cohort study. Journal of Rehabilitation Medicine, 42(5):482-488.
- Shimada, H., Tiedemann, A., Lord, S. R., Suzukawa, M., Makizako, H., Kobayashi, K., and Suzuki, T. (2011). Physical factors underlying the association between lower walking performance and falls in older people: A structural equation model. Archives of Gerontology and Geriatrics, 53(2):131-134.
- Siracuse, J. J., Odell, D. D., Gondek, S. P., Odom, S. R., Kasper, E. M., Hauser, C. J., and Moorman, D. W. (2012). Health care and socioeconomic impact of falls in the elderly. The American Journal of Surgery, 203(3):335-338.
- Stalenhoef, P., Diederiks, J., Knottnerus, J., Kester, A., and Crebolder, H. (2002). A risk model for the prediction of recurrent falls in community-dwelling elderly: A prospective cohort study. Journal of Clinical Epidemiology, 55(11):1088-1094.
- Tiedemann, A., Shimada, H., Sherrington, C., Murray, S., and Lord, S. (2008). The comparative ability of eight functional mobility tests for predicting falls in community-dwelling older people. Age and Ageing, 37(4):430-435.
- Verghese, J., Holtzer, R., Lipton, R. B., and Wang, C. (2009). Quantitative gait markers and incident fall risk in older adults. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 64A(8):896-901.
- World Health Organization (2007). WHO global report on falls prevention in older age. World Health Organization. Ageing and Life Course Unit.
- World Health Organization (2012). Fact sheet #344: Falls. http://www.who.int/mediacentre/factsheets/fs344/en/.
Paper Citation
in Harvard Style
Sáenz Espinoza M. and Velhote Correia M. (2014). Setting the Criteria for the MATHOV + QAVS Tool - Qualitative and Quantitative Aspects for Wearable Fall Prediction . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014) ISBN 978-989-758-011-6, pages 69-75. DOI: 10.5220/0004914200690075
in Bibtex Style
@conference{biosignals14,
author={Mario Sáenz Espinoza and Miguel Velhote Correia},
title={Setting the Criteria for the MATHOV + QAVS Tool - Qualitative and Quantitative Aspects for Wearable Fall Prediction},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)},
year={2014},
pages={69-75},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004914200690075},
isbn={978-989-758-011-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)
TI - Setting the Criteria for the MATHOV + QAVS Tool - Qualitative and Quantitative Aspects for Wearable Fall Prediction
SN - 978-989-758-011-6
AU - Sáenz Espinoza M.
AU - Velhote Correia M.
PY - 2014
SP - 69
EP - 75
DO - 10.5220/0004914200690075