Thermal Storage in a Heat Pump Heated Living Room Floor for Urban District Power Balancing - Effects on Thermal Comfort, Energy Loss and Costs for Residents

R. P. van Leeuwen, J. B. de Wit, J. Fink, G. J. M. Smit

2014

Abstract

For the Dutch smart grid demonstration project Meppelenergie, the effects of controlled thermal energy storage within the floor heating structure of a living room by a heat pump are investigated. Storage possibilities are constrained by room operative and floor temperatures. Simulations indicate limitations for floor heating storage due to absorption of solar energy within the house. To balance power for district renewable energy supply, substantial energy can be stored into the floor without violating comfort limits. Heat loss to the outside due to floor heating storage is small in case of low energy houses and can be financially compensated. This may result in a proposition for residents which is equivalent to heating without thermal storage for power balancing purposes.

References

  1. Agentschapnl. N. D., Meppel heats new housing development with biogas. Available: http://www.agentschapnl.nl/sites/default/files/Meppel heats new housing development with biogas.pdf, retrieved: 18-10-2013.
  2. Agentschapnl. 2013. Referentiewoningen nieuwbouw 2013. Available: http://www.agentschapnl.nl/sites/ default/files/2013/09/Referentiewoningen.pdf, retrieved: 18-10-2013.
  3. Airaksinen, M. & Vuolle, M. 2013. Heating Energy and Peak-Power Demand in a Standard and Low Energy Building. Energies, 6, 235-250.
  4. Alvi, A. & Qureshi, 2011, H. F. Evaluation of Building Integrated Heating System in Terms of Thermal Comfort & Energy Efficiency, Mälardalen University, Sweden.
  5. ASHRAE 2009. ASHRAE Handbook-Fundamentals, Atlanta, American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).
  6. ASHRAE 2010. ASHRAE standard 55-2010 Thermal environmental conditions for human occupancy. Atlanta, USA: American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE).
  7. Bacher, P. & Madsen, H. 2011. Identifying suitable models for the heat dynamics of buildings. Energy and Buildings, 43, 1511-1522.
  8. Bouwformatie 2013. Available: http://bouwdetails. bouwformatie.nl., retrieved: 18-10-2013.
  9. BUVA 2013. BUVA bouwdetails [Online]. Available: buva.archidat.nl., retrieved: 18-10-2013.
  10. CBS 2011, Hernieuwbare energie in Nederland 2011. Heerlen: CBS.
  11. Duffie, J. A., Beckman, W. A. 1980. Solar engineering of thermal processes, New York, Wiley.
  12. Erbs, D. G., Klein, S. A., Duffie, J. A. 1982. Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. Solar Energy, 28, 293-302.
  13. Fellin, F. & Sommer, K. 2003. Study of a low energy office building with thermal slabs and ground coupled heat pump. Dipartimento di Fisica Tecnica, Università di Padova (Italia).
  14. ISO 2005. NEN-EN-ISO 7730 Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria (ISO 7730:2005,IDT). Delft: NEN.
  15. Lehmann, B., Dorer, V. & Koschenz, M. 2007. Application range of thermally activated building systems tabs. Energy and Buildings, 39, 593-598.
  16. Liu, K., Tian, Z., Zhang, C., Ding, Y. & Wang, W. 2011. Establishment and validation of modified star-type RC-network model for concrete core cooling slab. Energy and Buildings, 43, 2378-2384.
  17. Molderink, A. 2011. On the tree step methodology for smart grids. University of Twente.
  18. Nykamp, S., Molderink, A., Bakker, V., Toersche, H., Hurink, J. & Smit, G. 2012. Integration of heat pumps in distribution grids: Economic motivation for grid control. 3rd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT Europe), IEEE, 1-8.
  19. Pavlov, G. K. & Olesen, B. W. 2011. Building thermal energy storage-concepts and applications, Technical University of Denmark.
  20. Rijksen, D. O., Wisse, C. J. & Van Schijndel, A. W. M. 2010. Reducing peak requirements for cooling by using thermally activated building systems. Energy and Buildings, 42, 298-304.
  21. Rijkswaterstaat. 2013. WKO tool. Available: www.wkotool.nl, retrieved: 21-10-2013.
  22. Saelens, D., Parys, W. & Baetens, R. 2011. Energy and comfort performance of thermally activated building systems including resident behavior. Building and Environment, 46, 835-848.
  23. Scheepens, A. E., Flipsen S.F.J., Vogiatzakis, P., Brezet, J.C. 2013. An Ecocost-Value Ratio (EVR) approach to the design of a Product-Service System for environmentally sustainable residential heating energy use. Energy and Environment Knowledge Week - E2KW2013. Toledo, Spain.
  24. Tahersima, F., Stoustrup, J., Meybodi, S. A. & Rasmussen, H. 2011. Contribution of domestic heating systems to smart grid control. 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), IEEE, 3677-3681.
  25. Toersche, H., Bakker, V., Molderink, A., Nykamp, S., Hurink, J. & Smit, G. Controlling the heating mode of heat pumps with the TRIANA three step methodology. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), IEEE, 1-7.
  26. Verhelst, C., Logist, F., Van Impe, J. & Helsen, L. 2012. Study of the optimal control problem formulation for modulating air-to-water heat pumps connected to a residential floor heating system. Energy and Buildings, 45, 43-53.
  27. VIEGA 2009. Technische handleiding Fonterra vloer- en wandverwarming, Available: http://www.viega.nl/cps/ rde/xbcr/nl-nl/Technische_handleiding_Fonterra_ vloer_en_wandverwarming.pdf, retrieved: 18-10- 2013.
  28. Witte, H., Van Gelder, A., Klep, P. & Groenholland, B. 2006. A very large distributed ground source heat pump project for domestic heating: Schoenmakershoek, Etten-Leur (the Netherlands). Proceedings Ecostock, the Tenth International Conference on Thermal Energy Storage. New Jersey, 2006.
Download


Paper Citation


in Harvard Style

van Leeuwen R., de Wit J., Fink J. and Smit G. (2014). Thermal Storage in a Heat Pump Heated Living Room Floor for Urban District Power Balancing - Effects on Thermal Comfort, Energy Loss and Costs for Residents . In Proceedings of the 3rd International Conference on Smart Grids and Green IT Systems - Volume 1: SMARTGREENS, ISBN 978-989-758-025-3, pages 43-50. DOI: 10.5220/0004916300430050


in Bibtex Style

@conference{smartgreens14,
author={R. P. van Leeuwen and J. B. de Wit and J. Fink and G. J. M. Smit},
title={Thermal Storage in a Heat Pump Heated Living Room Floor for Urban District Power Balancing - Effects on Thermal Comfort, Energy Loss and Costs for Residents},
booktitle={Proceedings of the 3rd International Conference on Smart Grids and Green IT Systems - Volume 1: SMARTGREENS,},
year={2014},
pages={43-50},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004916300430050},
isbn={978-989-758-025-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Smart Grids and Green IT Systems - Volume 1: SMARTGREENS,
TI - Thermal Storage in a Heat Pump Heated Living Room Floor for Urban District Power Balancing - Effects on Thermal Comfort, Energy Loss and Costs for Residents
SN - 978-989-758-025-3
AU - van Leeuwen R.
AU - de Wit J.
AU - Fink J.
AU - Smit G.
PY - 2014
SP - 43
EP - 50
DO - 10.5220/0004916300430050