Enhanced Bone Healing Through Mechanical Stimulation by Implanted Piezoelectric Actuators

Natacha Rosa, Fernão D. Magalhães, Ricardo Simões, António Torres Marques

2014

Abstract

Tibia fractures are one of the most frequent injuries of the musculoskeletal system. Although, in the last decades, fracture treatment has improved considerably, complications, like delayed union and non-unions with an incidence rate up to 13 %, still occur. The healing time is an important parameter with direct implications on the patient’s physical and emotional wellbeing and it also represents an additional cost to the health care system. The main goal of this research work is to develop an actuator device that through piezoelectric mechanical stimulation is capable of accelerating in a controlled manner, the bone physiological fracture-healing process and leads to a reconstructed fracture that approximates normal anatomy. Considering the risks of overload on the healed tissue and inspired by the potential benefits of the very low bone-stimulus during quiet standing, we decided to complement the commonly used external fixator healing technique with a short period, low-magnitude (<5 µɛ), high-frequency (20 to 60 Hz ) local stimulation, using a small sized piezoelectric actuator in contact with the bone fracture. The low amplitudes of the signals created by the actuator appear to be well below those which may cause risk to the regenerate tissue. We do believe that if the natural healing process is not compromised by the presence of the piezoelectric actuator – for example due to a toxicity reaction - and if ideal biological (i.e. in terms of traumatized tissue revascularization and the inflammatory process) and mechanical conditions for repair are created accelerated fracture healing may be achieved. Hence, facilitating an early rehabilitation and avoiding an additional costly surgical intervention.

References

  1. Aarden, E. M., Nijweide, P. J., and Burger, E. H. (2004). Function of osteocytes in bone. Journal of Cellular Biochemistry, 55(3):287-299.
  2. Ajubi, N., Klein-Nulend, J., Nijweide, P., VrijheidLammers, T., Alblas, M., and Burger, E. (1996). Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes - a cytoskeletondependent process. Biochemical and Biophysical Research Communications, 225(1):62-68.
  3. Antonova, E., Le, T. K., Burge, R., and Mershon, J. (2013). Tibia shaft fractures: costly burden of nonunions. BMC Musculoskeletal Disorders, 14(1):42.
  4. Audigé, L., Griffin, D., Bhandari, M., Kellam, J., and Rü edi, T. P. (2005). Path analysis of factors for delayed healing and nonunion in 416 operatively treated tibial shaft fractures. Clinical Orthopaedics and Related Research, 438:221-232.
  5. Bacabac, R. G., Smit, T. H., Mullender, M. G., Dijcks, S. J., Van Loon, J. J., and Klein-Nulend, J. (2004). Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochemical and Biophysical Research Communications, 315(4):823-829.
  6. Bacon, G. and Goodship, A. (2007). The healing process for fractured tibia bones of sheep studied by neutron diffraction. Journal of Applied Crystallography, 40(2):349-353.
  7. Bail ón-Plaza, A. and van der Meulen, M. C. (2003). Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. Journal of Biomechanics, 36(8):1069-1077.
  8. Boerckel, J. D., Kolambkar, Y. M., Stevens, H. Y., Lin, A. S., Dupont, K. M., and Guldberg, R. E. (2012). Effects of in vivo mechanical loading on large bone defect regeneration. Journal of Orthopaedic Research, 30(7):1067-1075.
  9. Claes, L., Recknagel, S., and Ignatius, A. (2012). Fracture healing under healthy and inflammatory conditions. Nature Reviews Rheumatology, 8(3):133-143.
  10. Comiskey, D., MacDonald, B., McCartney, W., Synnott, K., and O'Byrne, J. (2010). The role of interfragmentary strain on the rate of bone healinga new interpretation and mathematical model. Journal of Biomechanics, 43(14):2830-2834.
  11. Dimitriou, R., Jones, E., McGonagle, D., and Giannoudis, P. V. (2011). Bone regeneration: current concepts and future directions. BMC medicine, 9(1):66.
  12. Duncan, R. and Turner, C. (1995). Mechanotransduction and the functional response of bone to mechanical strain. Calcified Tissue International, 57(5):344-358.
  13. Fritton, S. P., J McLeod, K., and Rubin, C. T. (2000). Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. Journal of Biomechanics, 33(3):317-325.
  14. Gao, J., Gong, H., Huang, X., Fang, J., Zhu, D., and Fan, Y. (2013). Relationship between microstructure, material distribution, and mechanical properties of sheep tibia during fracture healing process. International Journal of Medical Sciences, 10(11):1560.
  15. Gardnera, T., Stoll, T., Marks, L., Mishra, S., and Knothe Tate, M. (2000). The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracturean fem study. Journal of Biomechanics, 33(4):415-425.
  16. Giannotti, S., Bottai, V., DellOsso, G., Pini, E., De Paola, G., Bugelli, G., and Guido, G. (2013). Current medical treatment strategies concerning fracture healing. Clinical Cases in Mineral and Bone Metabolism, 10(2):116.
  17. Giannoudis, P. V., Einhorn, T. A., and Marsh, D. (2007). Fracture healing: the diamond concept. Injury, 38:S3- S6.
  18. Goldstein, C., Sprague, S., and Petrisor, B. A. (2010). Electrical stimulation for fracture healing: current evidence. Journal of Orthopaedic Trauma, 24:S62-S65.
  19. Goodship, A. E., Lawes, T. J., and Rubin, C. T. (2009). Low-magnitude high-frequency mechanical signals accelerate and augment endochondral bone repair: Preliminary evidence of efficacy. Journal of Orthopaedic Research, 27(7):922-930.
  20. Griffin, M. and Bayat, A. (2011). Electrical stimulation in bone healing: critical analysis by evaluating levels of evidence. Eplasty, 11:303-353.
  21. Hak, D. J., Toker, S., Yi, C., and Toreson, J. (2010). The influence of fracture fixation biomechanics on fracture healing. Orthopedics, 33(10):752-755.
  22. Heckman, J. D. and Sarasohn-Kahn, J. (1997). The economics of treating tibia fractures. Bulletin Hospital for Joint Diseases, 56(1):63-72.
  23. Huang, R. P., Rubin, C. T., and McLeod, K. J. (1999). Changes in postural muscle dynamics as a function of age. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 54(8):B352-B357.
  24. ISO 10993-5 (2009). Biological evaluation of medical devices Part 5: Tests for in vitro cytotoxicity.
  25. Klein-Nulend, J., Bakker, A. D., Bacabac, R. G., Vatsa, A., and Weinbaum, S. (2013). Mechanosensation and transduction in osteocytes. Bone, 54:2.
  26. Kumagai, K., Takeuchi, R., Ishikawa, H., Yamaguchi, Y., Fujisawa, T., Kuniya, T., Takagawa, S., Muschler, G. F., and Saito, T. (2012). Low-intensity pulsed ultrasound accelerates fracture healing by stimulation of recruitment of both local and circulating osteogenic progenitors. Journal of Orthopaedic Research, 30(9):1516-1521.
  27. Kunnel, J., Gilbert, J., and Stern, P. (2002). In vitro mechanical and cellular responses of neonatal mouse bones to loading using a novel micromechanical-testing device. Calcified Tissue International, 71(6):499-507.
  28. Lacroix, D. and Prendergast, P. (2002). Three-dimensional simulation of fracture repair in the human tibia. Computer Methods in Biomechanics & Biomedical Engineering, 5(5):369-376.
  29. Leung, K. S., Shi, H. F., Cheung, W. H., Qin, L., Ng, W. K., Tam, K. F., and Tang, N. (2009). Low-magnitude high-frequency vibration accelerates callus formation, mineralization, and fracture healing in rats. Journal of Orthopaedic Research, 27(4):458-465.
  30. Malizos, K. N., Hantes, M. E., Protopappas, V., and Papachristos, A. (2006). Low-intensity pulsed ultrasound for bone healing: an overview. Injury, 37(1):S56-S62.
  31. Mavc?ic?, B. and Antolic?, V. (2012). Optimal mechanical environment of the healing bone fracture/osteotomy. International Orthopaedics, 36(4):689-695.
  32. Minary-Jolandan, M. and Yu, M.-F. (2009). Nanoscale characterization of isolated individual type i collagen fibrils: polarization and piezoelectricity. Nanotechnology, 20(8):085706.
  33. NHS-Portugal (2012). Hospital morbidity - Perliminary data. Portugal: National Health Service.
  34. Niezrecki, C., Brei, D., Balakrishnan, S., and Moskalik, A. (2001). Piezoelectric actuation: state of the art. The Shock and Vibration Digest, 33:269.
  35. Perren, S. (1979). Physical and biological aspects of fracture healing with special reference to internal fixation. Clinical Orthopaedics and Related Research, 138:175-196.
  36. Rath Bonivtch, A., Bonewald, L. F., and Nicolella, D. P. (2007). Tissue strain amplification at the osteocyte lacuna: a microstructural finite element analysis. Journal of biomechanics, 40(10):2199-2206.
  37. Roseiro, L. M., Neto, M., Amaro, A., Leal, R. P., and Samarra, M. C. (2013). External fixator configurations in tibia fractures: 1d optimization and 3d analysis comparison. Computer Methods and Programs in Biomedicine, 113:360-370.
  38. Rubin, C. T., Sommerfeldt, D. W., Judex, S., and Qin, Y.-X. (2001). Inhibition of osteopenia by low magnitude, high-frequency mechanical stimuli. Drug Discovery Today, 6(16):848-858.
  39. Saffar, K. P., JamilPour, N., and Rajaai, S. M. (2009). How does bhe bone shaft geometry affect its bending properties? American Journal of Applied Sciences, 6(3):463.
  40. Smith, G. K. (1985). Textbook of small animal orthopedics. Lippincott Williams & Wilkins.
  41. Stevenson, S. (1998). Enhancement of fracture healing with autogenous and allogeneic bone grafts. Clinical Orthopaedics and Related Research, 355:S239-S246.
  42. Tanaka, S. M. (1999). A new mechanical stimulator for cultured bone cells using piezoelectric actuator. Journal of Biomechanics, 32(4):427-430.
  43. Tarni¸ta?, D., Tarni¸ta?, D., Popa, D., Grecu, D., TarniT¸ A? , R., Niculescu, D., and Cismaru, F. (2010). Numerical simulations of human tibia osteosynthesis using modular plates based on nitinol staples. Romanian Journal of Morphology and Embryology, 51(1):145.
  44. Wehner, T., Claes, L., and Simon, U. (2009). Internal loads in the human tibia during gait. Clinical Biomechanics, 24(3):299-302.
  45. Wu, N., Lee, Y.-c., Segina, D., Benjamin, N., Boulanger, L., Murray, H., and Wilcox, T. (2013). Cost savings associated with the use of electrical bone growth stimulation to treat diabetic patients in the us with fracture nonunion. Journal of Diabetes & Metabolism, 4:4.
  46. Zamora-Navas, P., Verdera, A., Lorenzo, R., Ayuso, J., and Reina, M. (1995). Electrical stimulation of bone nonunion with the presence of a gap. Acta Orthopaedica Belgica, 61:169-176.
Download


Paper Citation


in Harvard Style

Rosa N., D. Magalhães F., Simões R. and Torres Marques A. (2014). Enhanced Bone Healing Through Mechanical Stimulation by Implanted Piezoelectric Actuators . In Doctoral Consortium - DCBIOSTEC, (BIOSTEC 2014) ISBN Not Available, pages 10-17


in Bibtex Style

@conference{dcbiostec14,
author={Natacha Rosa and Fernão D. Magalhães and Ricardo Simões and António Torres Marques},
title={Enhanced Bone Healing Through Mechanical Stimulation by Implanted Piezoelectric Actuators},
booktitle={Doctoral Consortium - DCBIOSTEC, (BIOSTEC 2014)},
year={2014},
pages={10-17},
publisher={SciTePress},
organization={INSTICC},
doi={},
isbn={Not Available},
}


in EndNote Style

TY - CONF
JO - Doctoral Consortium - DCBIOSTEC, (BIOSTEC 2014)
TI - Enhanced Bone Healing Through Mechanical Stimulation by Implanted Piezoelectric Actuators
SN - Not Available
AU - Rosa N.
AU - D. Magalhães F.
AU - Simões R.
AU - Torres Marques A.
PY - 2014
SP - 10
EP - 17
DO -