Robust Estimation of Load Performance of DC Motor using Genetic Algorithm

Jong Kwang Lee, Byung Suk Park, Jonghui Han, Il-Je Cho

2014

Abstract

This paper presents a novel approach to estimate the load performance curves of DC motors whose equations are represented as a function of the torque based on a steady-state model with constraints. Since a simultaneous optimization of the curves forms a multi-objective optimization problem (MOP), we apply an optimal curve fitting method based on a real-coded genetic algorithm (RGA). In the method, we introduce a normalized ratio of errors to solve the MOP without the use of weighting factors and the nominal parameters to automatically determine the searching bounds of the curve parameters. Compared to the conventional least square fitting methods, the proposed scheme provides robust and accurate estimation characteristics even when fewer measurements with a small range of torque loading are taken and used for a data fitting.

References

  1. ANSI/IEEE Std. 113-1985. (1985). IEEE Guide: Test Procedures for Direct-Current Machines. 1-39.
  2. Duliu-Barton, J. M. and Worden, K. (2003). Genetic identification of crack-tip parameters using thermoelastic isopachics. Meas. Sci. Technol. 14. 176- 83.
  3. Huang, K. S., Wu, Q. H., Turner, D. R. (2002). Effective identification of induction motor parameters based on fewer measurements. IEEE Trans. on Energy Conversion. 17. 447-53.
  4. Flynn, A. M. (1998). Performance of ultrasonic minimotors using design of experiments. Smart Mater. Struct. 7. 286-94.
  5. Michalewicz, Z. (1996). Genetic algorithm+data structures= evolution programs. Berlin: Springer.
  6. Mitsuo, G. and Runwei, C. (1990). Genetic algorithms and engineering optimization. New Jersey: Prentis hall.
  7. Nakamura, K., Kurosawa, M., Kurebayashi, H., Ueha, S. (1991). An estimation of load characteristics of an ultrasonic motor by measuring transient responses. IEEE Trans. On Ultrasonics, Ferroelectrics, and Frequency Control. 38. 481-5.
  8. Nangsue, P., Pillay, P., Conry, S. E. (1999). Evolutionary algorithms for induction motor parameter determination. IEEE Trans. on Energy Conversion. 14 447-53.
  9. Soukup, G. C. (1989). Determination of motor quality through routine electrical tests. IEEE Trans. on Industry Applications. 25. 873-880.
Download


Paper Citation


in Harvard Style

Lee J., Park B., Han J. and Cho I. (2014). Robust Estimation of Load Performance of DC Motor using Genetic Algorithm . In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-038-3, pages 110-116. DOI: 10.5220/0005008301100116


in Bibtex Style

@conference{simultech14,
author={Jong Kwang Lee and Byung Suk Park and Jonghui Han and Il-Je Cho},
title={Robust Estimation of Load Performance of DC Motor using Genetic Algorithm},
booktitle={Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2014},
pages={110-116},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005008301100116},
isbn={978-989-758-038-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Robust Estimation of Load Performance of DC Motor using Genetic Algorithm
SN - 978-989-758-038-3
AU - Lee J.
AU - Park B.
AU - Han J.
AU - Cho I.
PY - 2014
SP - 110
EP - 116
DO - 10.5220/0005008301100116