Sliding Mode Control of Biglide Planar Parallel Manipulator

Mustapha Litim, Benyamine Allouche, Abdelhafid Omari, Antoine Dequidt, Laurent Vermeiren

2014

Abstract

This work presents the control of a two-degree of freedom parallel manipulator using nonlinear sliding mode approach. The aim is to achieve a robust control for trajectory tracking. The control is based on the inverse dynamic model in the Cartesian space of the parallel manipulator. Kinematic analysis are also discussed. To guarantee the high performance on the tracking control. Biglide robot requires full knowledge on the system’s dynamics. In this paper, some important properties of the parallel manipulators are considered to develop a sliding mode controller which can drive the movement tracking error to zero asymptotically. Numerical simulations are completed to show the effectiveness of the approach for a large parameter variations.

References

  1. Omran, A and Elshabasy, M. (2010). A note on the inverse dynamic control of parallel manipulators. In Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(1), 25-32.
  2. Cheng, H., Yiu, Y. K., and Li, Z. (2003). Dynamics and control of redundantly actuated parallel manipulators. Mechatronics. IEEE/ASME Transactions on, 8(4), 483-491.
  3. Abdellatif, H., Grotjahn, M., and Heimann, B. (2005, December). High efficient dynamics calculation approach for computed-force control of robots with parallel structures. In Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC'05. 44th IEEE Conference on (pp. 2024-2029). IEEE.
  4. Weck, M., Staimer, D. (2002). Parallel kinematic machine toolscurrent state and future potentials. CIRP AnnalsManufacturing Technology, 51(2), 671-683.
  5. Jamwal, P. K., Xie, S. Q., Tsoi, Y. H., and Aw, K. C. (2010). Forward kinematics modelling of a parallel ankle rehabilitation robot using modified fuzzy inference. Mechanism and Machine Theory, 45(11), 1537- 1554.
  6. Gough, V. E. (1956) Contribution to discussion of papers on research in automobile stability, control and tyre performance. In Proc. Auto Div. Inst. Mech. Eng (Vol. 171, pp. 392-394).
  7. Stewart, D. (1965). A platform with six degrees of freedom. Proceedings of the institution of mechanical engineers, 180(1), 371-386.
  8. Vermeiren, L., Dequidt, A., Afroun, M., and Guerra, T. M. (2012). Motion control of planar parallel robot using the fuzzy descriptor system approach. ISA transactions, 51(5), 596-608.
  9. Cheung, J. W., Hung, Y. S. (2005, July) Modelling and control of a 2-DOF planar parallel manipulator for semiconductor packaging systems. In Advanced Intelligent Mechatronics. Proceedings, 2005 IEEE/ASME International Conference on (pp. 717-722). IEEE.
  10. Pierrot, F., Krut, S., Baradat, C., and Nabat, V. (2011). Par2: a spatial mechanism for fast planar two-degreeof-freedom pick-and-place applications. Meccanica, 46(1), 239-248.
  11. Khalil, W., Ibrahim, O. (2007). General solution for the dynamic modeling of parallel robots. Journal of intelligent and robotic systems, 49(1), 19-37.
  12. Staicu, S., Liu, X. J., and Wang, J. (2007). Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear Dynamics, 50(1-2), 1-12.
  13. Staicu, S. (2009). Recursive modelling in dynamics of Agile Wrist spherical parallel robot. Robotics and Computer-Integrated Manufacturing, 25(2), 409-416.
  14. Ghorbel, F. H., Chtelat, O., Gunawardana, R., and Longchamp, R. (2000). Modeling and set point control of closed-chain mechanisms: theory and experiment. Control Systems Technology, IEEE Transactions on, 8(5), 801-815.
  15. Ouyang, P. R., Zhang, W. J., and Wu, F. X. (2002). Nonlinear PD control for trajectory tracking with consideration of the design for control methodology. In Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on (Vol. 4, pp. 4126-4131). IEEE.
  16. Ouyang, P. R., Zhang, W. J., and Gupta, M. M. (2006). An adaptive switching learning control method for trajectory tracking of robot manipulators. Mechatronics, 16(1), 51-61.
  17. Le, T. D., Kang, H. J., and Suh, Y. S. (2013). ChatteringFree Neuro-Sliding Mode Control of 2-DOF Planar Parallel Manipulators. Internation Journal of Advanced Robotic Systems (October 22, 2013).
  18. Piltan, F., Rahmdel, S., Mehrara, S., and Bayat, R. (2012). Sliding mode methodology vs. Computed torque methodology using matlab/simulink and their integration into graduate nonlinear control courses. International Journal of Engineering, 6(3), 142-177.
  19. Yang, Z., Wu, J., and Mei, J. (2007). Motor-mechanism dynamic model based neural network optimized computed torque control of a high speed parallel manipulator. Mechatronics, 17(7), 381-390.
  20. Zhu, X., Tao, G., Yao, B., and Cao, J. (2009) Integrated direct/indirect adaptive robust posture trajectory tracking control of a parallel manipulator driven by pneumatic muscles. Control Systems Technology, IEEE Transactions on, 17(3), 576-588.
  21. Slotine, J. J. E., Li, W. (1991). Englewood Cliffs, NJ: Prentice-Hall. Applied nonlinear control (Vol. 199, No. 1).
  22. Sadati, N., Ghadami, R. (2008). Adaptive multi-model sliding mode control of robotic manipulators using soft computing. Neurocomputing, 71(13), 2702-2710.
  23. Zeinali, M., Notash, L. (2010). Adaptive sliding mode control with uncertainty estimator for robot manipulators. Mechanism and Machine Theory, 45(1), 80-90.
  24. Castaos, F., Fridman, L. (2006). Analysis and design of integral sliding manifolds for systems with unmatched perturbations. Automatic Control, IEEE Transactions on, 51(5), 853-858.
  25. AL-Samarraie, S. A. (2013). Invariant Sets in Sliding Mode Control Theory with Application to Servo Actuator System with Friction. WSEAS TRANSACTIONS on SYSTEMS and CONTROL, 8(2), 33-45.
  26. Utkin, V., Guldner, J., and Shijun, M. (1999). Sliding mode control in electro-mechanical systems (Vol. 34). CRC press.
  27. Sankaranarayanan, V., Mahindrakar, A. D. (2009). Control of a class of underactuated mechanical systems using sliding modes. Robotics, IEEE Transactions on, 25(2), 459-467.
  28. Geravand, M., Aghakhani, N. (2010). Fuzzy sliding mode control for applying to active vehicle suspentions. Wseas Transactions on Systems and Control, 5(1), 48- 57.
  29. Lin, F. J., Chen, S. Y., and Shyu, K. K. (2009). Robust dynamic sliding-mode control using adaptive RENN for magnetic levitation system. Neural Networks, IEEE Transactions on, 20(6), 938-951.
  30. Lin, F. J., Chen, S. Y., and Shyu, K. K. (2009). General design issues of sliding-mode controllers in DCDC converters. Industrial Electronics, IEEE Transactions on, 55(3), 1160-1174
  31. Khiari, B., Sellami, A., Andoulsi, R., and Mami, A. (2012). A Novel Strategy Control of Photovoltaic Solar Pumping System Based on Sliding Mode Control. International Review of Automatic Control, 5(2) Table 1: Parameters model of Biglide parallel robot.
  32. Values 0.07
Download


Paper Citation


in Harvard Style

Litim M., Allouche B., Omari A., Dequidt A. and Vermeiren L. (2014). Sliding Mode Control of Biglide Planar Parallel Manipulator . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-040-6, pages 303-310. DOI: 10.5220/0005015403030310


in Bibtex Style

@conference{icinco14,
author={Mustapha Litim and Benyamine Allouche and Abdelhafid Omari and Antoine Dequidt and Laurent Vermeiren},
title={Sliding Mode Control of Biglide Planar Parallel Manipulator},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2014},
pages={303-310},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005015403030310},
isbn={978-989-758-040-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Sliding Mode Control of Biglide Planar Parallel Manipulator
SN - 978-989-758-040-6
AU - Litim M.
AU - Allouche B.
AU - Omari A.
AU - Dequidt A.
AU - Vermeiren L.
PY - 2014
SP - 303
EP - 310
DO - 10.5220/0005015403030310