Multi-loop Control Using Gershgorin and Ostrowski Bands

C. Le Brun, E. Godoy, D. Beauvois, N. Doncque, R. Noguera

2014

Abstract

The goal of this paper is to develop a new method of decentralized control tuning. This method is based on Nyquist-Arrays and independently designs monovariable controllers for each loop of the plant while ensuring the robust stability of the multivariable system. It works on the optimization of a frequency criterion using the controller’s design parameters. PID controllers have been chosen in this study because of their good performances for most applications. Finally, the proposed method allows to achieve good performances and the stability is ensured thanks to the analysis of Gershgorin and Ostrowski bands.

References

  1. Albertos, P., Sala, A., 2004. Multivariable control systems. Springer.
  2. Aström, K., Hägglund, T., 1995. PID Controllers: Theory, Design, and Tuning, 2nd edition, ISA.
  3. Bell, D. J., Cook, P. A., Munro N., 1982. Design of Modern Control Systems. Peter Peregrinus.
  4. Bourlès, H., 2010. Linear Systems. Wiley.
  5. Chen, D., Seborg, D. E., 2002. “Multiloop PI/PID controller design based on Gershgorin bands”. IEEE Proceedings, Control Theory and Applications.
  6. Garcia, D., Karimi, A., Longchamp, R., 2005. “PID Controller Design for Multivariable Systems using Gershgorin Bands”. IFAC.
  7. Ho, W. K., Lee, T. H., and Gan, O. P., 1997. “Tuning of multiloop PID controllers based on gain and phase margin specifications”. Industrial & Engineering Chemistry Research.
  8. Huang, H. P., Jeng, J. C., Chiang, C. H., Pan, W., 2003. “A direct method for multi-loop PI/PID controller design”. Journal of Process Control 13, 769-786.
  9. Leigh, J. R., 1982. Applied Control Theory. Peter Peregrinus.
  10. Macfarlane, A. G. J., Postlethwaite, I., 1977. “The Generalized Nyquist Stability Criterion and Multivariable Root Loci”. International Journal of Control.
  11. Maciejowski, J. M., 1989. Multivariable Feedback Design. Addison Wesley.
  12. Mirkin, L., 2011. Control Theory. Lectures, Faculty of Mechanical Engineering Technion-IIT.
  13. Rosenbrock, H. H., 1969. “Design of multivariable control systems using the inverse Nyquist array”. Proceedings IEEE, Vol. 116.
  14. Skogestad, S., Morari M., 1989. “Robust Performance of Decentralized Control Systems by Independent Designs”. Automatica, Vol. 25, No. 1, 119-125.
  15. Skogestad, S., Postlethwaite I., 1996. Multivariable Feedback Control - Analysis and design. Wiley.
  16. Vaes, D., 2005. Optimal Static Decoupling for Multivariable Control Design. PhD. Dissertation, Catholic University of Leuven.
  17. Ye, Z., Wang Q.-G., Hang C. C., Zhang Y., Zhang Y., 2008. “Frequency domain approach to computing loop phase margins of multivariable systems”. IFAC.
Download


Paper Citation


in Harvard Style

Le Brun C., Godoy E., Beauvois D., Doncque N. and Noguera R. (2014). Multi-loop Control Using Gershgorin and Ostrowski Bands . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 635-642. DOI: 10.5220/0005017406350642


in Bibtex Style

@conference{icinco14,
author={C. Le Brun and E. Godoy and D. Beauvois and N. Doncque and R. Noguera},
title={Multi-loop Control Using Gershgorin and Ostrowski Bands},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={635-642},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005017406350642},
isbn={978-989-758-039-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Multi-loop Control Using Gershgorin and Ostrowski Bands
SN - 978-989-758-039-0
AU - Le Brun C.
AU - Godoy E.
AU - Beauvois D.
AU - Doncque N.
AU - Noguera R.
PY - 2014
SP - 635
EP - 642
DO - 10.5220/0005017406350642