A Cortico-Collicular Model for Multisensory Integration

Federico Giovannini, Elisa Magosso

2014

Abstract

Remarkable visual-auditory cross-modal phenomena occur at perceptual level: a visual stimulus enhances or biases auditory localization in case of spatially coincident or spatially disparate stimuli. Hemianopic patients (with one blind hemifield resulting from damage to primary visual cortex) retain visual enhancement but not visual bias of auditory localization in the blind hemifield. Here, we propose a neural network model to investigate which cortical and subcortical regions may be involved in these phenomena in intact and damaged conditions. The model includes an auditory cortical area, the primary and extrastriate visual cortices and the Superior Colliculus (a subcortical structure). Model simulations suggest that: i) Visual enhancement of auditory localization engages two circuits (one involving the primary visual cortex and one involving the Superior Colliculus) that act in a redundant manner. In absence of primary visual cortex (hemianopia), enhancement still occurs thanks to the Superior Colliculus strongly activated by the spatially coincident stimuli. ii) Visual bias of auditory localization is due to an additive contribution of the two circuits. In hemianopia, the effect disappears as the Superior Colliculus is not sufficiently activated by the spatially disparate stimuli. The model helps interpreting perceptual visual-auditory phenomena and their retention or absence in brain damage conditions.

References

  1. Alais, D., Newell, F.N., and Mamassian, P., 2010. Multisensory processing in review: from physiology to behaviour. Seeing and Perceiving, 23(1), pp.3-38.
  2. Bertelson, P., and Radeau, M., 1981. Cross-modal bias and perceptual fusion with auditory-visual spatial discordance. Perception & Psychophysics, 29(6), pp.578-584.
  3. Bertini, C., Leo, F., Avenanti, A., and Làdavas, E., 2010. Independent mechanisms for ventriloquism and multisensory integration as revealed by theta-burst stimulation. The European Journal of Neuroscience, 31(10), pp.1791-1799.
  4. Bolognini, N., Rasi, F., Coccia, M. Làdavas, E., 2005. Visual search improvement in hemianopic patients after audio-visual stimulation. Brain, 128 (Pt.12), pp. 2830-2842.
  5. Bolognini, N., Leo, F., Passamonti, C., Stein, B.E., and Làdavas, E., 2007. Multisensory-mediated auditory localization. Perception, 36(10), pp.1477-1485.
  6. Bruns, P., Maiworm, M., Röder, B., 2014. Reward expectation influences audiovisual spatial integration. Attention, Perception & Psychophysics, [Epub ahead of print].
  7. Calvert, G., Spence, C., and Stein, B.E., 2004. The handbook of multisensory processes. MIT Press.
  8. Calvert, G., and Thesen, T., 2004. Multisensory integration: methodological approaches and emerging principles in the human brain. Journal of Physiology, Paris, 98(1-3), pp.191-205.
  9. Cowey, A., 2010. The blindsight saga. Experimental Brain Research, 200(1), pp.3-24.
  10. Cuppini, C., Magosso, E., Rowland, B., Stein, B., and Ursino, M., 2012. Hebbian mechanisms help explain development of multisensory integration in the superior colliculus: a neural network model. Biological Cybernetics, 106(11-12), pp.691-713.
  11. Cuppini, C., Magosso, E., Bolognini, N., Vallar, G., and Ursino, M., 2014. A neurocomputational analysis of the sound-induced flash illusion. Neuroimage, 92, pp.248-266.
  12. Driver, J., and Spence, C., 2000. Multisensory perception: beyond modularity and convergence. Current Biology, 10(20), pp.R731-735.
  13. Foxe, J.J., and Schroeder, C.E., 2005. The case for feedforward multisensory convergence during early cortical processing. Neuroreport, 16(5), pp.419-423.
  14. Ghazanfar, A.A., and Schroeder, C.E., 2006. Is neocortex essentially multisensory? Trends in Cognitive Sciences, 10(6), pp.278-285.
  15. Isa, T., and Yoshida, M., 2009. Saccade control after V1 lesion revisited. Current Opinion in Neurobiology, 19(6), pp.608-614.
  16. Leo, F., Bolognini, N., Passamonti, C., Stein, B.E., and Làdavas, E., 2008. Cross-modal localization in hemianopia: new insights on multisensory integration. Brain, 131(Pt 3), pp.855-865.
  17. Magosso, E., Cona, F., and Ursino, M., 2013. A neural network model can explain ventriloquism aftereffect and its generalization across sound frequencies. BioMed Research International, 2013, p.475427.
  18. Magosso, E., Cuppini, C., Serino, A., Di Pellegrino, G., and Ursino, M., 2008. A theoretical study of multisensory integration in the superior colliculus by a neural network model. Neural Networks, 21(6), pp.817-829.
  19. Magosso, E., Cuppini, C., and Ursino, M., 2012. A neural network model of ventriloquism effect and aftereffect. PLoS ONE, 7(8), p.e42503.
  20. Meredith, M.A., and Stein, B.E., 1996. Spatial determinants of multisensory integration in cat superior colliculus neurons. Journal of Neurophysiology, 75(5), pp.1843-1857.
  21. Passamonti, C., Frissen, I., and Làdavas, E., 2009. Visual recalibration of auditory spatial perception: two separate neural circuits for perceptual learning. The European Journal of Neuroscience, 30(6), pp.1141- 1150.
  22. Sparks, D.L., 1986. Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiological Reviews, 66(1), pp.118-171.
  23. Stein, B.E., and Meredith, M.A., 1993. The merging of senses. Cambridge, MA, The MIT Press.
  24. Tong, F., 2003. Cognitive neuroscience: Primary visual cortex and visual awareness. Nature Reviews Neuroscience, 4(3), pp.219-229.
  25. Wallace, M.T., Meredith, M.A., and Stein, B.E., 1993. Converging influences from visual, auditory, and somatosensory cortices onto output neurons of the superior colliculus. Journal of Neurophysiology, 69(6), pp.1797-1809.
Download


Paper Citation


in Harvard Style

Giovannini F. and Magosso E. (2014). A Cortico-Collicular Model for Multisensory Integration . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014) ISBN 978-989-758-054-3, pages 15-23. DOI: 10.5220/0005023600150023


in Bibtex Style

@conference{ncta14,
author={Federico Giovannini and Elisa Magosso},
title={A Cortico-Collicular Model for Multisensory Integration},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)},
year={2014},
pages={15-23},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005023600150023},
isbn={978-989-758-054-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)
TI - A Cortico-Collicular Model for Multisensory Integration
SN - 978-989-758-054-3
AU - Giovannini F.
AU - Magosso E.
PY - 2014
SP - 15
EP - 23
DO - 10.5220/0005023600150023