EPE and Speed Adaptive Extended Kalman Filter for Vehicle Position and Attitude Estimation with Low Cost GNSS and IMU Sensors
P. Balzer, T. Trautmann, O. Michler
2014
Abstract
This paper presents a novel approach for an adaptive Extended Kalman Filter (EKF), which is able to handle bad signal quality caused by shading or loss of Doppler Effect for low cost Global Navigation Satellite System (GNSS) receiver and Inertial Measurement Unit (IMU) sensors fused in a loosely coupled way. It uses the estimated position error as well as the speed to calculate the standard deviation for the measurement uncertainty matrix of the Kalman Filter. The filter is very easy to implement, because some conversions of the measurement, as well as the state variables, are made to reduce the complexity of the Jacobians, which are used in the EKF filter algorithm. The filter implementation is tested within a simulation and with real data and shows significantly better performance, compared to a standard EKF. The developed filter is running in realtime on an embedded device and is able to perform position and attitude estimation of a vehicle with low cost sensors.
References
- Barczyk, M. and Lynch, A. F. (2011). Invariant Extended Kalman Filter design for a magnetometer-plus-GPS aided inertial navigation system. IEEE Conference on Decision and Control and European Control Conference, pages 5389-5394.
- Bistrovs, V. and Kluga, A. (2012). Adaptive Extended Kalman Filter for Aided Inertial Navigation System. Electronics & Electrical Engineering, 6(6).
- Buchholz, J. J. (2013). Vorlesungsmanuskript Regelungstechnik und Flugregler.
- Effertz, J. (2009). Autonome Fahrzeugführung in urbaner Umgebung durch Kombination objekt- und kartenbasierter Umfeldmodelle. PhD thesis, Technische Universität Carolo-Wilhelmina zu Braunschweig.
- Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. 82(Series D):35-45.
- Kelly, A. (1994). A 3D state space formulation of a navigation Kalman filter for autonomous vehicles. (May).
- Kingston, D. and Beard, R. (2004). Real-Time Attitude and Position Estimation for Small UAVs Using Low-Cost Sensors. AIAA 3rd ”Unmanned Unlimited” Technical Conference, Workshop and Exhibit, pages 1-9.
- Madgwick, S. (2010). An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Report x-io and University of Bristol.
- Mourikis, A. and Roumeliotis, S. (2007). A Multi-State Constraint Kalman Filter for Vision-aided Inertial Navigation. Proceedings 2007 IEEE International Conference on Robotics and Automation.
- Penarrocha, I. and Sanchis, R. (2010). Adaptive extended Kalman filter for recursive identification under missing data. 49th IEEE Conference on Decision and Control (CDC), pages 1165-1170.
- Schubert, R., Adam, C., Obst, M., Mattern, N., Leonhardt, V., and Wanielik, G. (2011). Empirical evaluation of vehicular models for ego motion estimation. 2011 IEEE Intelligent Vehicles Symposium (IV), pages 534- 539.
- Sharif, M. and Stein, A. (2004). Integrated approach to predict confidence of GPS measurement. isprsserv.ifp.uni-stuttgart.de.
- St-Pierre, M. and Gingras, D. (2004). Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system. Intelligent Vehicles Symposium, 2004 . . . .
- Stephen, J. and Lachapelle, G. (2001). Development and Testing of a GPS-Augmented Multi-Sensor Vehicle navigation system. The Journal of Navigation, 54:297-319.
- Sun, F. S. F., Xu, W. X. W., and Li, J. L. J. (2010). Enhancement of the Aided Inertial Navigation System for an AUV via micronavigation. OCEANS 2010.
- Toledo-Moreo, R. (2007). High-integrity IMM-EKFbased road vehicle navigation with low-cost GPS/SBAS/INS. Intelligent . . . , 8(3):491-511.
- von Holt, V. (2004). Integrale multisensorielle Fahrumgebungserfassung nach dem 4D-Ansatz. PhD thesis, Universität der Bundeswehr München.
- von Rosenberg, H. (2006). Sensorfusion zur Navigation eines Fahrzeugs mit low-cost Inertialsensorik. Diplomarbeit, Universität Stuttgart.
- Wender, S. (2008). Multisensorsystem zur erweiterten Fahrzeugumfelderfassung.
Paper Citation
in Harvard Style
Balzer P., Trautmann T. and Michler O. (2014). EPE and Speed Adaptive Extended Kalman Filter for Vehicle Position and Attitude Estimation with Low Cost GNSS and IMU Sensors . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 649-656. DOI: 10.5220/0005023706490656
in Bibtex Style
@conference{icinco14,
author={P. Balzer and T. Trautmann and O. Michler},
title={EPE and Speed Adaptive Extended Kalman Filter for Vehicle Position and Attitude Estimation with Low Cost GNSS and IMU Sensors},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={649-656},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005023706490656},
isbn={978-989-758-039-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - EPE and Speed Adaptive Extended Kalman Filter for Vehicle Position and Attitude Estimation with Low Cost GNSS and IMU Sensors
SN - 978-989-758-039-0
AU - Balzer P.
AU - Trautmann T.
AU - Michler O.
PY - 2014
SP - 649
EP - 656
DO - 10.5220/0005023706490656