Model Identification for Photovoltaic Panels Using Neural Networks
Antonino Laudani, Gabriele Maria Lozito, Martina Radicioni, Francesco Riganti Fulginei, Alessandro Salvini
2014
Abstract
The present work documents the study on the usage of Neural Networks to compute the parameters used in solar panel modelling. The approach followed starts from a dataset obtained by a process of model identification via numerical solution of nonlinear equations. After a preliminary analysis pointing out the intrinsic difficulty in the classic identification of the parameters via NN, by taking advantage of closed form relations, a hybrid neural system, composed by neural network based identifiers and explicit equations, was implemented. The generalization capabilities of the neural identifier were investigated, showing the effectiveness of this approach.
References
- Askarzadeh, A. and Rezazadeh, A. (2013). Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Applied Energy, 102(0):943 - 949.
- Blair, N. J., Dobos, A. P., and Gilman, P. (2010). Comparison of photovoltaic models in the system advisor model. In Solar 2013, Baltimore, Maryland.
- California Energy Commission (2013). CECPV calculator version 4.0. [Online]. Avialable: http://www.gosolarcalifornia.org/tools/nshpcalculator/.
- Capizzi, G., Coco, S., Giuffrida, C., and Laudani, A. (2004). A neural network approach for the differentiation of numerical solutions of 3-d electromagnetic problems. Magnetics, IEEE Transactions on, 40(2):953-956.
- Carrasco, M., Mancilla-David, F., Fulginei, F. R., Laudani, A., and Salvini, A. (2013). A neural networks-based maximum power point tracker with improved dynamics for variable dc-link grid-connected photovoltaic power plants. International Journal of Applied Electromagnetics and Mechanics, 43(1).
- Cubas, J., Pindado, S., and Victoria, M. (2014). On the analytical approach for modeling photovoltaic systems behavior. Journal of Power Sources, 247:467 - 474.
- Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4):303-314.
- Desoto, W., Klein, S., and Beckman, W. (2006). Improvement and validation of a model for photovoltaic array performance. Solar Energy, 80(1):78-88.
- El-Naggar, K., AlRashidi, M., AlHajri, M., and Al-Othman, A. (2012). Simulated annealing algorithm for photovoltaic parameters identification. Solar Energy, 86(1):266 - 274.
- Fulginei, F. R., Laudani, A., Salvini, A., and Parodi, M. (2013). Automatic and parallel optimized learning for neural networks performing MIMO applications. Advances in Electrical and Computer Engineering, 13(1):3-12.
- Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5):359-366.
- Hunter, D., Yu, H., Pukish, M. S., Kolbusz, J., and Wilamowski, B. M. (2012). Selection of proper neural network sizes and architectures - A comparative study. Industrial Informatics, IEEE Trans. on, 8(2):228-240.
- Ilonen, J., Kamarainen, J.-K., and Lampinen, J. (2003). Differential evolution training algorithm for feedforward neural networks. Neural Processing Letters, 17(1):93-105.
- Ishaque, K. and Salam, Z. (2011). An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (de). Solar Energy, 85(9):2349 - 2359.
- Jiang, L. L., Maskell, D. L., and Patra, J. C. (2013). Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm. Applied Energy, 112(0):185 - 193.
- Kim, C.-T. and Lee, J.-J. (2008). Training two-layered feedforward networks with variable projection method. Neural Networks, IEEE Trans. on, 19(2):371-375.
- Laudani, A., Fulginei, F. R., and Salvini, A. (2014a). High performing extraction procedure for the one-diode model of a photovoltaic panel from experimental I-V curves by using reduced forms. Solar Energy, 103:316 - 326.
- Laudani, A., Fulginei, F. R., Salvini, A., Lozito, G. M., and Coco, S. (2014b). Very fast and accurate procedure for the characterization of photovoltaic panels from datasheet information. International Journal of Photoenergy, 2014. Article ID 946360.
- Laudani, A., Mancilla-David, F., Riganti-Fulginei, F., and Salvini, A. (2013). Reduced-form of the photovoltaic five-parameter model for efficient computation of parameters. Solar Energy, 97(0):122 - 127.
- Li, Y., Huang, W., Huang, H., Hewitt, C., Chen, Y., Fang, G., and Carroll, D. L. (2013). Evaluation of methods to extract parameters from currentvoltage characteristics of solar cells. Solar Energy, 90(0):51 - 57.
- Liu, Y.-H., Liu, C.-L., Huang, J.-W., and Chen, J.-H. (2013). Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments. Solar Energy, 89:42-53.
- Mancilla-David, F., Riganti-Fulginei, F., Laudani, A., and Salvini, A. (2014). A neural network-based low-cost solar irradiance sensor. Instrumentation and Measurement, IEEE Trans. on.
- Parodi, M., Fulginei, F. R., and Salvini, A. (2012). Learning optimization of neural networks used for mimo applications based on multivariate functions decomposition. Inverse Problems in Science and Engineering, 20(1):29-39.
- Rajasekar, N., Kumar, N. K., and Venugopalan, R. (2013).
- Bacterial foraging algorithm based solar {PV} parameter estimation. Solar Energy, 97(0):255 - 265.
- Rawat, R., Patel, J. K., and Manry, M. T. (2013). Minimizing validation error with respect to network size and number of training epochs. In Neural Networks (IJCNN), The 2013 International Joint Conference on, pages 1-7. IEEE.
- Sandrolini, L., Artioli, M., and Reggiani, U. (2010). Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis. Applied Energy, 87(2):442 - 451.
- Siddiqui, M. and Abido, M. (2013). Parameter estimation for five- and seven-parameter photovoltaic electrical models using evolutionary algorithms. Applied Soft Computing, 13(12):4608 - 4621.
- Teoh, E., Tan, K., and Xiang, C. (2006). Estimating the number of hidden neurons in a feedforward network using the singular value decomposition. Neural Networks, IEEE Trans. on, 17(6):1623-1629.
- Wilamowski, B. M. (2009). Neural network architectures and learning algorithms. Industrial Electronics Magazine, IEEE, 3(4):56-63.
- Xu, C., Wang, C., Ji, F., and Yuan, X. (2012). Finiteelement neural network-based solving 3-d differential equations in mfl. Magnetics, IEEE Transactions on, 48(12):4747-4756.
- Yadav, A. K. and Chandel, S. (2014). Solar radiation prediction using artificial neural network techniques: A review. Renewable and Sustainable Energy Reviews, 33:772 - 781.
- Zagrouba, M., Sellami, A., Bouacha, M., and Ksouri, M. (2010). Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction. Solar Energy, 84(5):860 - 866.
Paper Citation
in Harvard Style
Laudani A., Lozito G., Radicioni M., Riganti Fulginei F. and Salvini A. (2014). Model Identification for Photovoltaic Panels Using Neural Networks . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014) ISBN 978-989-758-054-3, pages 130-137. DOI: 10.5220/0005039201300137
in Bibtex Style
@conference{ncta14,
author={Antonino Laudani and Gabriele Maria Lozito and Martina Radicioni and Francesco Riganti Fulginei and Alessandro Salvini},
title={Model Identification for Photovoltaic Panels Using Neural Networks},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)},
year={2014},
pages={130-137},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005039201300137},
isbn={978-989-758-054-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)
TI - Model Identification for Photovoltaic Panels Using Neural Networks
SN - 978-989-758-054-3
AU - Laudani A.
AU - Lozito G.
AU - Radicioni M.
AU - Riganti Fulginei F.
AU - Salvini A.
PY - 2014
SP - 130
EP - 137
DO - 10.5220/0005039201300137