Evolutionary Tuning of Optimal Controllers for Complex Systems

Jesús-Antonio Hernández-Riveros, Jorge-Humberto Urrea-Quintero, Cindy Carmona-Cadavid

2014

Abstract

The Proportional Integral Derivative controller is the most widely used industrial device for monitoring and controlling processes. Although there are alternatives to the traditional rules of tuning, there is not yet a study showing that the use of heuristic algorithms it is indeed better than using the classic methods of optimal tuning. Current trends in controller parameter estimation minimize an integral performance criterion. In this paper, an evolutionary algorithm (MAGO - Multidynamics Algorithm for Global Optimization) is used as a tool to optimize the controller parameters minimizing the ITAE (Integral of Time multiplied by Absolut Error) performance index. The procedure is applied to a set of standard plants modelled as a Second Order System Plus Time Delay (SOSPD). Operating on servo and regulator modes and regardless the plant used, the evolutionary approach gets a better overall performance comparing to traditional methods (Bohl and McAvoy, Minimum ITAE-Hassan, Minimum ITAE-Sung). The solutions obtained cover all restrictions and extends the maximum and minimum boundaries between them.

References

  1. Åström K. J., Hägglund T., 1995. PID controllers: theory, design and tuning. Instrument Society of America.
  2. Åström K.J., Hägglund T., 2000. Benchmark Systems for PID Control. IFAC Workshop on Digital Control -- Past, present, and future of PID Control. Spain.
  3. Bohl A. H., McAvoy T. J., 1976. Linear Feedback vs. Time Optima Control. II. The Regulator Problem. Industrial & Engineering Chemistry Process Design and Development, 15(1), 30-33.
  4. Chang W. D., Yan J. J., 2004. Optimum setting of PID controllers based on using evolutionary programming algorithm. Journal of the Chinese Institute of Engineers, 27(3), 439-442.
  5. Desanti J., 2004. Robustness of tuning methods of based on models of first-order plus dead time PI and PID controllers (in Spanish). Escuela de Ingeniería Eléctrica, Universidad de Costa Rica.
  6. Fleming P. J., Purshouse R. C., 2002. Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice, 10(11), 1223-1241.
  7. Hassan G. A., 1993. Computer-aided tuning of analog and digital controllers. Control and Computers, 21, 1-1.
  8. Hansen N. (2006). The CMA Evolution Strategy. In: Towards a new evolutionary computation. Lozano, Larrañaga, Inza, Bengoetxea, Heidelberg, Springer.
  9. Hernández J. A., Ospina J. D., 2010. A multi dynamics algorithm for global optimization. Mathematical and Computer Modelling, 52(7), 1271-1278.
  10. Hernández-Riveros Jesús-Antonio, Villada-Cano Daniel., 2012. Sensitivity Analysis of an Autonomous Evolutionary Algorithm. Lecture Notes in Computer Science. Volume 763. Advances in Artificial Intelligence. Springer.
  11. Hernández-Riveros J., Arboleda-Gómez A., 2013. Multicriteria decision and multi-objective optimization for constructing and selecting models for systems identification. Trans.Modelling and Simulation, 55.
  12. Herreros A., Baeyens E., Perán J. R., 2002. Design of PID-type controllers using multiobjective genetic algorithms. ISA transactions, 41(4), 457-472.
  13. Iruthayarajan M. W., Baskar S., 2009. Evolutionary algorithms based design of multivariable PID controller. Expert systems with Applications, 36(5).
  14. Junli L., Jianlin M.. Guanghui Z., 2011. Evolutionary algorithms based parameters tuning of PID controller. Control and Decision Conference, IEEE. 416-420.
  15. Lagunas J. 2004. Tuning of PID controllers using a multiobjective genetic algorithm, (NSGA-II). (in Spanish) (Doctoral dissertation) Departamento de Control Automático. Centro de Investigación y de Estudios Avanzados. México.
  16. Li, Y., Ang, K.H., Chong, G.C., 2006. PID control system analysis and design. IEEE Control Systems Magazine 26(1), 32-41.
  17. Liu G. P., Daley S., 2001. Optimal-tuning PID control for industrial systems. Control Engineering Practice, 9(11), 1185-1194.
  18. Lozano J. A., Larrañaga P., Inza I., Bengoetxea E. (Eds.). 2006. Towards a new evolutionary computation: Advances on estimation of distribution algorithms. Springer.
  19. Michail, K., Zolotas, A.C., Goodall, R.M., Whidborne, J.F., 2012. Optimised configuration of sensors for fault tolerant control of an electro-magnetic suspension system, International Journal of Systems Science, 43 (10), 1785-1804.
  20. Montgomery D. C., 2008. Introduction to statistical quality control. John Wiley & Sons. Wiley, New York.
  21. Mora J. 2004. Performance and robustness of the methods based on second order models plus dead time tuning PID controllers. (in Spanish). Escuela de Ingeniería Eléctrica, Universidad de Costa Rica.
  22. Dwyer A., 2009. Handbook of PI and PID controller tuning rules (Vol. 2). London: Imperial College Press.
  23. Saad M. S., Jamaluddin H., Darus I. Z. M., 2012a. PID Controller Tuning Using Evolutionary Algorithms. WSEAS Transactions on Systems and Control. Issue 4.
  24. Saad M. S., Jamaluddin H., Darus I. Z. M., 2012b. Implementation of PID controller tuning using differential evolution and genetic algorithms. Int. Journal of Innovative Computing Information and Control, 8(11), 7761-7779.
  25. Skolicki Z., De Jong K., 2005. The influence of migration sizes and intervals on island models. Proceedings of the conference on Genetic and evolutionary computation ACM. 1295-1302.
  26. Solera Saborío E. 2005. PI / PID Controller Tuning with IAE and ITAE criteria for double pole plants. (in Spanish). Escuela de Ingeniería Eléctrica, Universidad de Costa Rica.
  27. Sung S. W., Lee O, J., Lee I. B., Yi S. H. 1996. Automatic Tuning of PID Controller Using Second-Order Plus Time Delay Model. Journal of chemical engineering of Japan, 29(6), 990-999.
  28. Tavakoli S., Griffin I., Fleming P. J., 2007. Multiobjective optimization approach to the PI tuning problem. Evolutionary Computation Congress. IEEE. 3165-3171.
  29. Vinter, R., 2000. Optimal Control. Systems & Control: Foundations & Applications. Springer, London.
  30. Whitley Darrell., 2001. An overview of evolutionary algorithms: practical issues and common pitfalls. Information and Software Technology. 43(14).
  31. Xinjie Yu, Mitsuo Gen., 2010. Introduction to Evolutionary Algorithms. Springer, London.
Download


Paper Citation


in Harvard Style

Hernández-Riveros J., Urrea-Quintero J. and Carmona-Cadavid C. (2014). Evolutionary Tuning of Optimal Controllers for Complex Systems . In Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014) ISBN 978-989-758-052-9, pages 11-20. DOI: 10.5220/0005041100110020


in Bibtex Style

@conference{ecta14,
author={Jesús-Antonio Hernández-Riveros and Jorge-Humberto Urrea-Quintero and Cindy Carmona-Cadavid},
title={Evolutionary Tuning of Optimal Controllers for Complex Systems},
booktitle={Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)},
year={2014},
pages={11-20},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005041100110020},
isbn={978-989-758-052-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2014)
TI - Evolutionary Tuning of Optimal Controllers for Complex Systems
SN - 978-989-758-052-9
AU - Hernández-Riveros J.
AU - Urrea-Quintero J.
AU - Carmona-Cadavid C.
PY - 2014
SP - 11
EP - 20
DO - 10.5220/0005041100110020