Multiple Camera Human Detection and Tracking Inside a Robotic Cell - An Approach based on Image Warping, Computer Vision, K-d Trees and Particle Filtering
Matteo Ragaglia, Luca Bascetta, Paolo Rocco
2014
Abstract
In an industiral scenario the capability to detect and track human workers entering a robotic cell represents a fundamental requirement to enable safe and efficient human-robot cooperation. This paper proposes a new approach to the problem of Human Detection and Tracking based on low-cost commercial RGB surveillance cameras, image warping techniques, computer vision algorithms, efficient data structures such as kdimensional trees and particle filtering. Results of several validation experiments are presented.
References
- Arechavaleta, G., Laumond, J.-P., Hicheur, H., and Berthoz, A. (2008). An optimality principle governing human walking. Robotics, IEEE Transactions on, 24(1):5- 14.
- Asaula, R., Fontanelli, D., and Palopoli, L. (2010). Safety provisions for human/robot interactions using stochastic discrete abstractions. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 2175-2180.
- Bascetta, L., Ferretti, G., Rocco, P., Ardo, H., Bruyninckx, H., Demeester, E., and Di Lello, E. (2011). Towards safe human-robot interaction in robotic cells: An approach based on visual tracking and intention estimation. In Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages 2971- 2978.
- Bradski, G. (2000). The OpenCV Library. Dr. Dobb's Journal of Software Tools.
- Bradski, G. and Kaehler, A. (2008). Learning OpenCV: Computer Vision with the OpenCV library. O'Reilly Media.
- Elshafie, M. and Bone, G. (2008). Markerless human tracking for industrial environments. In Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference on, pages 001139-001144.
- Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second edition.
- KaewTraKulPong, P. and Bowden, R. (2002). An improved adaptive background mixture model for realtime tracking with shadow detection. In Remagnino, P., Jones, G., Paragios, N., and Regazzoni, C., editors, Video-Based Surveillance Systems, pages 135- 144. Springer US.
- Kulic, D. and Croft, E. (2007). Pre-collision safety strategies for human-robot interaction. Auton. Robots, 22(2):149-164.
- Moore, A. (1991). A tutorial on kd-trees. Extract from PhD Thesis. Available from http: //www.ri.cmu.edu/pub_files/pub1/moore_ andrew_1991_1/moore_andrew_1991_1.pdf.
- Mosberger, R. and Andreasson, H. (2013). An inexpensive monocular vision system for tracking humans in industrial environments. In Robotics and Automation (ICRA), 2013 IEEE International Conference on, pages 5850-5857.
- Mosberger, R., Andreasson, H., and Lilienthal, A. (2013). Multi-human tracking using high-visibility clothing for industrial safety. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on, pages 638-644.
- Munaro, M., Basso, F., and Menegatti, E. (2012). Tracking people within groups with rgb-d data. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 2101-2107.
- Munaro, M., Lewis, C., Chambers, D., Hvass, P., and Menegatti, E. (2013). Rgb-d human detection and tracking for industrial environments. In 13th International Conference on Intelligent Autonomous Systems (IAS-13). accepted.
- Najmaei, N., Kermani, M., and Al-Lawati, M. (2011). A new sensory system for modeling and tracking humans within industrial work cells. Instrumentation and Measurement, IEEE Transactions on, 60(4):1227-1236.
- Rogez, G., Orrite, C., Guerrero, J., and Torr, P. H. (2014). Exploiting projective geometry for viewinvariant monocular human motion analysis in manmade environments. Computer Vision and Image Understanding, 120(0):126 - 140.
- Zivkovic, Z. (2004). Improved adaptive gaussian mixture model for background subtraction. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, volume 2, pages 28-31 Vol.2.
- Zivkovic, Z. and van der Heijden, F. (2006). Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett., 27(7):773-780.
Paper Citation
in Harvard Style
Ragaglia M., Bascetta L. and Rocco P. (2014). Multiple Camera Human Detection and Tracking Inside a Robotic Cell - An Approach based on Image Warping, Computer Vision, K-d Trees and Particle Filtering . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-040-6, pages 374-381. DOI: 10.5220/0005045703740381
in Bibtex Style
@conference{icinco14,
author={Matteo Ragaglia and Luca Bascetta and Paolo Rocco},
title={Multiple Camera Human Detection and Tracking Inside a Robotic Cell - An Approach based on Image Warping, Computer Vision, K-d Trees and Particle Filtering},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2014},
pages={374-381},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005045703740381},
isbn={978-989-758-040-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Multiple Camera Human Detection and Tracking Inside a Robotic Cell - An Approach based on Image Warping, Computer Vision, K-d Trees and Particle Filtering
SN - 978-989-758-040-6
AU - Ragaglia M.
AU - Bascetta L.
AU - Rocco P.
PY - 2014
SP - 374
EP - 381
DO - 10.5220/0005045703740381