Nonlinear Models of BPSK Costas Loop

E. V. Kudryasoha, O. A. Kuznetsova, N. V. Kuznetsov, G. A. Leonov, S. M. Seledzhi, M. V. Yuldashev, R. V. Yuldashev

2014

Abstract

Rigorous nonlinear analysis of the physical model of Costas loop is very difficult task, so for analysis, simplified mathematical models and numerical simulation are widely used. In the work it is shown that the use of simplified mathematical models, and the application of non rigorous methods of analysis may lead to wrong conclusions concerning the operability of Costas loop.

References

  1. Abramovitch, D. (1990). Lyapunov redesign of analog phase-lock loops. Communications, IEEE Transactions on, 38(12):2197-2202.
  2. Abramovitch, D. (2008a). Efficient and flexible simulation of phase locked loops, part I: simulator design. In American Control Conference, pages 4672-4677, Seattle, WA.
  3. Abramovitch, D. (2008b). Efficient and flexible simulation of phase locked loops, part II: post processing and a design example. In American Control Conference, pages 4678-4683, Seattle, WA.
  4. Andrievsky, B. R., Kuznetsov, N. V., Leonov, G. A., and Pogromsky, A. Y. (2013). Hidden oscillations in aircraft flight control system with input saturation. IFAC Proceedings Volumes (IFAC-PapersOnline), 5(1):75- 79.
  5. Best, R. E. (2007). Phase-Lock Loops: Design, Simulation and Application. McGraw-Hill.
  6. Best, R. E., Kuznetsov, N. V., Leonov, G. A., Yuldashev, M. V., and Yuldashev, R. V. (2014a). Discontinuity and Complexity in Nonlinear Physical Systems, volume 6, chapter Nonlinear analysis of phase-locked loop based circuits. Springer.
  7. Best, R. E., Kuznetsov, N. V., Leonov, G. A., Yuldashev, M. V., and Yuldashev, R. V. (2014b). Simulation of analog Costas loop circuits. International Journal of Automation and Computing. accepted.
  8. Bragin, V. O., Vagaitsev, V. I., Kuznetsov, N. V., and Leonov, G. A. (2011). Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua's circuits. Journal of Computer and Systems Sciences International, 50(4):511-543.
  9. Bueno, A., Ferreira, A., and Piqueira, J. (2010). Modeling and filtering double-frequency jitter in one-way masterslave chain networks. IEEE transactions on circuits and systemsI, 57(12):3104-3111.
  10. Chang, F.-J., Twu, S.-H., and Chang, S. (1993). Global bifurcation and chaos from automatic gain control loops. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, 40(6):403- 412.
  11. Chicone, C. and Heitzman, M. (2013). Phase-locked loops, demodulation, and averaging approximation time-scale extensions. SIAM J. Applied Dynamical Systems, 12(2):674-721.
  12. Costas, J. (1956). Synchoronous communications. In Proc. IRE, volume 44, pages 1713-1718.
  13. Costas, J. P. (1962). Receiver for communication system. US Patent 3,047,659.
  14. Gardner, F. (1966). Phase-lock techniques. John Wiley, New York.
  15. Gardner, F. (2005). Phaselock Techniques. Wiley.
  16. Goyal, P., Lai, X., and Roychowdhury, J. (2006). A fast methodology for first-time-correct design of PLLs using nonlinear phase-domain VCO macromodels. In Proceedings of the 2006 Asia and South Pacific Design Automation Conference, pages 291-296.
  17. Hedin, G., Holmes, J., Lindsey, W., and Woo, K. (1978). Theory of false lock in costas loops. Communications, IEEE Transactions on, 26(1):1-12.
  18. Hinz, M., Konenkamp, I., and Horneber, E.-H. (2000). Behavioral modeling and simulation of phase-locked loops for RF front ends. In Proc. 43rd BEE Midwest Symp. on Circuits and Systems, pages 194-197. IEEE.
  19. Kaplan, E. and Hegarty, C. (2006). Understanding GPS: Principles and Applications. Artech House.
  20. Samoilenko, A. and Petryshyn, R. (2004). Multifrequency Oscillations of Nonlinear Systems. Mathematics and Its Applications. Springer.
  21. Sanders, J. A., Verhulst, F., and Murdock, J. (2007). Averaging Methods in Nonlinear Dynamical Systems. Springer.
  22. Sarkar, B. C., Sarkar, S. S. D., and Banerjee, T. (2014). Nonlinear dynamics of a class of symmetric lock range DPLLs with an additional derivative control. Signal Processing, 94:631 - 641.
  23. Shirahama, H., Fukushima, K., Yoshida, N., and Taniguchi, K. (1998). Intermittent chaos in a mutually coupled pll's system. Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, 45(10):1114-1117.
  24. Simon, M. K. (1978). The false lock performance of costas loops with hard-limited in-phase channel. Communications, IEEE Transactions on, 26(1):23-34.
  25. Stensby, J. (1997). Phase-Locked Loops: Theory and Applications. Phase-locked Loops: Theory and Applications. Taylor & Francis.
  26. Stensby, J. (2011). An exact formula for the half-plane pullin range of a PLL. Journal of the Franklin Institute, 348(4):671-684.
  27. Suarez, A., Fernandez, E., Ramirez, F., and Sancho, S. (2012). Stability and bifurcation analysis of selfoscillating quasi-periodic regimes. IEEE transactions on microwave theory and techniques, 60(3):528-541.
  28. Suarez, A. and Quere, R. (2003). Stability Analysis of Nonlinear Microwave Circuits. Artech House.
  29. Thede, L. (2005). Practical analog and digital filter design. Artech House.
  30. Tranter, W., Bose, T., and Thamvichai, R. (2010). Basic Simulation Models of Phase Tracking Devices Using MATLAB. Synthesis lectures on communications. Morgan & Claypool.
  31. Vendelin, G., Pavio, A., and Rohde, U. (2005). Microwave Circuit Design Using Linear and Nonlinear Techniques. Wiley.
  32. Wang, T.-C., Chiou, T.-Y., and Lall, S. (2008). Nonlinear phase-locked loop design using semidefinite programming. In 16th Mediterranean Conference on Control and Automation, pages 1640-1645. IEEE.
  33. Watada, K., Endo, T., and Seishi, H. (1998). Shilnikov orbits in an autonomous third-order chaotic phaselocked loop. IEEE transactions on circuits and systems-I, 45(9):979-983.
  34. Wiegand, C., Hedayat, C., and Hilleringmann, U. (2010). Non-linear behaviour of charge-pump phase-locked loops. Advances in Radio Science, 8:161-166.
  35. Wu, N. (2002). Analog phaselock loop design using Popov critereon. In Proceedings of the 2002 American Control Conference, volume 1, pages 16-18. IEEE.
  36. Yoshimura, T., Iwade, S., Makino, H., and Matsuda, Y. (2013). Analysis of pull-in range limit by charge pump mismatch in a linear phase-locked loop. Circuits and Systems I: Regular Papers, IEEE Transactions on, 60(4):896-907.
Download


Paper Citation


in Harvard Style

Kudryasoha E., Kuznetsova O., Kuznetsov N., Leonov G., Seledzhi S., Yuldashev M. and Yuldashev R. (2014). Nonlinear Models of BPSK Costas Loop . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 704-710. DOI: 10.5220/0005050707040710


in Bibtex Style

@conference{icinco14,
author={E. V. Kudryasoha and O. A. Kuznetsova and N. V. Kuznetsov and G. A. Leonov and S. M. Seledzhi and M. V. Yuldashev and R. V. Yuldashev},
title={Nonlinear Models of BPSK Costas Loop},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={704-710},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005050707040710},
isbn={978-989-758-039-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Nonlinear Models of BPSK Costas Loop
SN - 978-989-758-039-0
AU - Kudryasoha E.
AU - Kuznetsova O.
AU - Kuznetsov N.
AU - Leonov G.
AU - Seledzhi S.
AU - Yuldashev M.
AU - Yuldashev R.
PY - 2014
SP - 704
EP - 710
DO - 10.5220/0005050707040710