A Robust Real-time Image Algorithm for Moving Target Detection from Unmanned Aerial Vehicles (UAV)

Mathieu Pouzet, Patrick Bonnin, Jean Laneurit, Cedric Tessier

2014

Abstract

We propose a real time method for moving target detection from a camera embedded on a UAV. As the camera is moving, we must estimate the background motion in order to compensate it and then perform the moving target detection. This compensation is realized by an image registration method. For this, we use an hybrid method using global minimization and feature-based approaches, with a pyramidal implementation. The good results obtained for registration give us the potential moving targets. As some wrong detections still appear, due to noise, occlusions or local change of illuminations, we worked on a robust spatio-temporal tracker able to decide if potential targets are real moving targets or not. The algorithm must reach real time performances for VGA images at 30 fps with a standard PC. We have tested our method on different sequences and show the good results obtained thanks to the high precision in the image registration and the spatio-temporal tracker.

References

  1. A.Goshtasby, G.C. Stockman, C. (1986). A region-based approach to digital image registration with subpixel accuracy. IEEE Transactions on geoscience on remote sensing, 24:390-399.
  2. Ali, S. and Shah, M. (2005). Cocoa - tracking in aerial imagery. In Proc. Int. Conf. on Computer Vision.
  3. Baker, S. and Matthews, I. (2002). Lucas-kanade 20 years on: A unifying framework: Part 1. (CMU-RI-TR-02- 16).
  4. Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features (surf). Comput. Vis. Image Underst., 110(3):346-359.
  5. Benhimane, S. and Malis, E. (2004). Real-time imagebased tracking of planes using efficient second-order minimization. In Proceedings of the International Conference on Intelligent Robots and Systems, pages 943-948.
  6. Bonnin, P., Blazevic, P., Morillon, J., Fialaire, C., and Benoist, J.-S. Real time tracking system by vision simplifying the interaction between human and robot for remote control of mobile robot. In RO-MAN, pages 945-950. IEEE.
  7. chih Wang, C., Thorpe, C., Hebert, M., Thrun, S., and Durrant-whyte, H. (2004). Simultaneous localization, mapping and moving object tracking.
  8. Cohen, I. and Medioni, G. (1998). Detection and tracking of objects in airborne video imagery.
  9. Crivelli, T., Bouthemy, P., Cernuschi-Frias, B., and Yao, J.- F. (2011). Simultaneous motion detection and background reconstruction with a conditional mixed-state markov random field. International Journal of Computer Vision, 94(3):295-316.
  10. Dame, A. and Marchand, E. (2012). Second order optimization of mutual information for real-time image registration. IEEE Trans. on Image Processing, 21(9):4190-4203.
  11. de Cabrol, A., Bonnin, P. J., Hugel, V., Blazevic, P., and Chetto, M. (2005). Video rate color region segmentation for mobile robotic applications. Proc. SPIE, 5909:59091E-59091E-12.
  12. de Cabrol, A., Bonnin, P. J., Hugel, V., Bouchefra, K., and Blazevic, P. (2005). Temporally optimized edge segmentation for mobile robotics applications. In Applications of Digital Image Processing XXVIII, volume 5909 of SPIE, pages 448-459.
  13. Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM, 24(6):381-395.
  14. Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In In Proc. of Fourth Alvey Vision Conference, pages 147-151.
  15. Hartley, R. I. and Zisserman, A. (2004). Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521540518, second edition.
  16. Huber, P., Wiley, J., and InterScience, W. (1981). Robust statistics. Wiley New York.
  17. Irani, M. and Anandan, P. (1998). A unified approach to moving object detection in 2d and 3d scenes. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 20.
  18. Klose, S., Heise, P., and Knoll, A. (2013). Efficient compositional approaches for real-time robust direct visual odometry from rgb-d data. In IROS, pages 1100-1106. IEEE.
  19. K.Poornima, R. (2012). A method to align images using iamge segmentation. IJCSE, 2.
  20. Ladikos, A., Benhimane, S., and Navab, N. (2007). A realtime tracking system combining template-based and feature-based approaches. In IN VISAPP.
  21. Lin, Y., Yu, Q., and Medioni, G. (2011). Efficient detection and tracking of moving objects in geo-coordinates. Mach. Vision Appl., 22(3):505-520.
  22. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vision, 60(2):91- 110.
  23. Malis, E. and Marchand, E. (2006). Experiments with robust estimation techniques in real-time robot vision. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS'06, pages 223-228, Beijing, Chine.
  24. Migliore, D., Rigamonti, R., Marzorati, D., Matteucci, M., and Sorrenti, D. G. (2009). Use a single camera for simultaneous localization and mapping with mobile object tracking in dynamic environments.
  25. Odobez, J. and Bouthemy, P. (1997). Separation of moving regions from background in an image sequence acquired with a mobile camera. In Li, H., Sun, S., and Derin, H., editors, Video Data Compression for Multimedia Computing, chapter 8, pages 283-311. Kluwer Academic Publisher.
  26. Reilly, V., Idrees, H., and Shah, M. (2010). Detection and tracking of large number of targets in wide area surveillance. In Proceedings of the 11th European Conference on Computer Vision Conference on Computer Vision: Part III, ECCV'10, pages 186-199, Berlin, Heidelberg. Springer-Verlag.
  27. Richard Evans, E. T. (2007). Visual mti for uav systems. 4th EMRS DTC Technical Conference Edinburgh.
  28. Rodrguez-Canosa, G. R., Thomas, S., del Cerro, J., Barrientos, A., and MacDonald, B. (2012). A real-time method to detect and track moving objects (datmo) from unmanned aerial vehicles (uavs) using a single camera. Remote Sensing, 4(4):1090-1111.
  29. Rosenfeld, A. and Pfaltz, J. L. (1966). Sequential operations in digital picture processing. J. ACM, 13(4):471-494.
  30. Smith, S. M. and Brady, J. M. (1995). Susan - a new approach to low level image processing. International Journal of Computer Vision, 23:45-78.
  31. yves Bouguet, J. (2000). Pyramidal implementation of the lucas kanade feature tracker. Intel Corporation, Microprocessor Research Labs.
  32. Zitov, B. and Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21:977-1000.
Download


Paper Citation


in Harvard Style

Pouzet M., Bonnin P., Laneurit J. and Tessier C. (2014). A Robust Real-time Image Algorithm for Moving Target Detection from Unmanned Aerial Vehicles (UAV) . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 266-273. DOI: 10.5220/0005052802660273


in Bibtex Style

@conference{icinco14,
author={Mathieu Pouzet and Patrick Bonnin and Jean Laneurit and Cedric Tessier},
title={A Robust Real-time Image Algorithm for Moving Target Detection from Unmanned Aerial Vehicles (UAV)},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={266-273},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005052802660273},
isbn={978-989-758-039-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - A Robust Real-time Image Algorithm for Moving Target Detection from Unmanned Aerial Vehicles (UAV)
SN - 978-989-758-039-0
AU - Pouzet M.
AU - Bonnin P.
AU - Laneurit J.
AU - Tessier C.
PY - 2014
SP - 266
EP - 273
DO - 10.5220/0005052802660273