Combining Top-down and Bottom-up Visual Saliency for Firearms Localization

Edoardo Ardizzone, Roberto Gallea, Marco La Cascia, Giuseppe Mazzola

2014

Abstract

Object detection is one of the most challenging issues for computer vision researchers. The analysis of the human visual attention mechanisms can help automatic inspection systems, in order to discard useless infor- mation and improving performances and efficiency. In this paper we proposed our attention based method to estimate firearms position in images of people holding firearms. Both top-down and bottom-up mechanisms are involved in our system. The bottom-up analysis is based on a state-of-the-art approach. The top-down analysis is based on the construction of a probabilistic model of the firearms position with respect to the peo- ple’s face position. This model has been created by analyzing information from of a public available database of movie frames representing actors holding firearms.

References

  1. Ardizzone, E., Bruno, A., and Mazzola, G. (2011). Visual saliency by keypoints distribution analysis. In ICIAP (1), pages 691-699.
  2. Bonaiuto, J. J. and Itti, L. (2005). Combining attention and recognition for rapid scene analysis. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops - Volume 03, CVPR 7805, pages 90-, Washington, DC, USA. IEEE Computer Society.
  3. Desimone, R. and Duncan, J. Neural mechanisms of selective visual attention. Annu Rev Neurosci, pages 193- 222.
  4. Felzenszwalb, P., Girshick, R., McAllester, D., and Ramanan, D. (2010). Object detection with discriminatively trained part based models. Pattern Analysis and Machine Intellingence, 32(9).
  5. Frintrop, S. (2006). VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search. Lecture Notes in Artificial Intelligence. Springer.
  6. Gao, D., Han, S., and Vasconcelos, N. (2009). Discriminant saliency, the detection of suspicious coincidences, and applications to visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(6):989-1005.
  7. Harel, J., Koch, C., and Perona, P. (2007). Graph-based visual saliency. In Advances in Neural Information Processing Systems 19, pages 545-552. MIT Press.
  8. Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1254-1259.
  9. Judd, T., Ehinger, K., Durand, F., and Torralba, A. (2009). Learning to predict where humans look. In IEEE International Conference on Computer Vision (ICCV).
  10. Kanan, C., Tong, M. H., Zhang, L., and Cottrell, G. W. (2009). SUN: Top-down saliency using natural statistics. Visual cognition, 17(6-7):979-1003.
  11. Kovacs, L. and Sziranyi, T. (2007). Focus area extraction by blind deconvolution for defining regions of interest. IEEE Trans. Pattern Anal. Mach. Intell., 29(6):1080- 1085.
  12. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., and Shum, H.-Y. (2011). Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell., 33(2):353-367.
  13. Lopez, A. M., Vanrell, M., Bagdanov, A. D., Van de Weijer, J., Anwer, R. M., and Khan, F. S. (2012). Color attributes for object detection. 2013 IEEE Conference on Computer Vision and Pattern Recognition, 0:3306- 3313.
  14. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. Int. J. Comput. Vision, 60(2):91- 110.
  15. Navalpakkam, V. and Itti, L. (2007). Search Goal Tunes Visual Features Optimally. Neuron, 53(4):605-617.
  16. Oliva, A., Torralba, A., Castelhano, M. S., and M.Henderson, J. (2003). Top-down control of visual attention in object detection.
  17. Treisman, A. and Sato, S. (1990). Conjunction search revisited. In Journal of Experimental Psychology: Human Perception and Performance, pages 459-478.
  18. Uijlings, J. R. R., Van de Sande, K. E. A., Gevers, T., and Smeulders, A. W. M. (2013). Selective search for object recognition. International Journal of Computer Vision.
  19. Valenti, R., Sebe, N., and Gevers, T. (2009). Image saliency by isocentric curvedness and color. In In ICCV.
  20. Vedaldi, A., Gulshan, V., Varma, M., and Zisserman, A. (2009). Multiple kernels for object detection. In Proceedings of the International Conference on Computer Vision (ICCV).
  21. Viola, P. and Jones, M. J. (2004). Robust real-time face detection. Int. J. Comput. Vision, 57(2):137-154.
  22. Wolfe, J. M. (1994). Guided Search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1(2):202-238.
  23. Xue, Z. and Blum, R. S. (2003). Concealed Weapon Detection Using Color Image Fusion. In Proceedings of 6th International Conference of Information Fusion, volume 1, pages 622-627.
  24. Yang, J. and Blum, R. S. (2002). A statistical signal processing approach to image fusion for concealed weapon detection. In IEEE Intl. Conf. on Image Processing, pages 513-516. Marcel Dekker.
  25. Zhang, Z. and Blum, R. S. (1997). Region-based image fusion scheme for concealed weapon detection. In In Proceedings of the 31st Annual Conference on Information Sciences and Systems, pages 168-173.
Download


Paper Citation


in Harvard Style

Ardizzone E., Gallea R., La Cascia M. and Mazzola G. (2014). Combining Top-down and Bottom-up Visual Saliency for Firearms Localization . In Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2014) ISBN 978-989-758-046-8, pages 25-32. DOI: 10.5220/0005054300250032


in Bibtex Style

@conference{sigmap14,
author={Edoardo Ardizzone and Roberto Gallea and Marco La Cascia and Giuseppe Mazzola},
title={Combining Top-down and Bottom-up Visual Saliency for Firearms Localization},
booktitle={Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2014)},
year={2014},
pages={25-32},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005054300250032},
isbn={978-989-758-046-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Signal Processing and Multimedia Applications - Volume 1: SIGMAP, (ICETE 2014)
TI - Combining Top-down and Bottom-up Visual Saliency for Firearms Localization
SN - 978-989-758-046-8
AU - Ardizzone E.
AU - Gallea R.
AU - La Cascia M.
AU - Mazzola G.
PY - 2014
SP - 25
EP - 32
DO - 10.5220/0005054300250032