Real-time People Detection and Mapping System for a Mobile Robot using a RGB-D Sensor

Francisco F. Sales, David Portugal, Rui P. Rocha

2014

Abstract

In this paper, we present a robotic system capable of mapping indoor, cluttered environments and, simultaneously, detecting people and localizing them with respect to the map, in real-time, using solely a Red-Green-Blue and Depth (RGB-D) sensor, the Microsoft Kinect, mounted on top of a mobile robotic platform running Robot Operating System (ROS). The system projects depth measures in a plane for mapping purposes, using a grid-based Simultaneous Localization and Mapping (SLAM) approach, and pre-processes the sensor’s point cloud to lower the computational load of people detection, which is performed using a classical technique based on Histogram of Oriented Gradients (HOG) features, and a linear Support Vector Machine (SVM) classifier. Results show the effectiveness of the approach and the potential to use the Kinect in real world scenarios.

References

  1. Bajracharya, M., Moghaddam, B., Howard, A., Brennan, S., and Matthies, L. H. (2009). A fast stereo-based system for detecting and tracking pedestrians from a moving vehicle. Int. Journal of Robotics Research, 28(11-12):1466-1485.
  2. Clemente, L., Davison, A., Reid, I., Neira, J., and Tardó s, J. D. (2007). Mapping large loops with a single handheld camera. Proc. Robotics: Science and Systems Conf.
  3. Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. Int. Conf. on Computer Vision & Pattern Recognition, 2:886-893.
  4. Dissanayake, M. G., Newman, P., Clark, S., DurrantWhyte, H. F., and Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. Rob. & Automation, IEEE Tr. on, 17(3):229- 241.
  5. Droeschel, D., May, S., Holz, D., Ploeger, P., and Behnke, S. (2009). Robust ego-motion estimation with ToF cameras. European Conf. on Mobile Robots, pages 187-192.
  6. Ferreira, J. F., Lobo, J., Bessière, P., Castelo-Branco, M., and Dias, J. (2013). A Bayesian framework for active artificial perception. IEEE Trans. on Cybernetics (Part B), 43(2):699-711.
  7. Fischler, M. A. and Bolles, R. C. (1981). RANdom SAmple Consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM, 24(6):381-395.
  8. Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved techniques for grid mapping with RaoBlackwellized particle filters. IEEE Trans. on Robotics, 23:2007.
  9. Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2010). RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments. Experimental Robotics, 79:477-491.
  10. Keller, C. G., Enzweiler, M., Rohrbach, M., Fernandez Llorca, D., Schnorr, C., and Gavrila, D. M. (2011). The benefits of dense stereo for pedestrian detection. ITS, IEEE Trans. on, 12(4):1096-1106.
  11. Konolige, K. and Agrawal, M. (2008). FrameSLAM: From bundle adjustment to real-time visual mapping. Robotics, IEEE Trans. on, 24(5):1066-1077.
  12. Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011). g2o: A general framework for graph optimization. ICRA, pages 3607-3613.
  13. Levi, K. and Weiss, Y. (2004). Learning object detection from a small number of examples: the importance of good features. CVPR, pages 53-60.
  14. Llorca, D., Sotelo, M., Hellín, A., Orellana, A., Gavilan, M., Daza, I., and Lorente, A. (2012). Stereo regionsof-interest selection for pedestrian protection: A survey. Transportation research part C: emerging technologies, 25:226-237.
  15. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. Int. Journal Computer Vision, 60(2):91-110.
  16. May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nü chter, A., and Hertzberg, J. (2009). 3D mapping with ToF cameras. Journal of Field Robotics, sp. issue on 3D Mapping.
  17. Menezes, P., Brethes, L., Lerasle, F., Danes, P., and Dias, J. (2003). Visual tracking of silhouettes for human-robot interaction. pages 971-976.
  18. Michael Calonder, Vincent Lepetit, and Pascal Fua (2008). Keypoint signatures for fast learning and recognition. In European Conf. on Computer Vision.
  19. Munaro, M., Basso, F., and Menegatti, E. (2012). Tracking people within groups with RGB-D data. IROS, pages 2101-2107.
  20. Portugal, D. and Rocha, R. P. (2013). Distributed multirobot patrol: A scalable and fault-tolerant framework. Robotics & Auton. Syst., 61(12):1572-1587.
  21. Premebida, C., Ludwig, O., and Nunes, U. (2009). Lidar and vision-based pedestrian detection system. Journal of Field Robotics, 26(9):696-711.
  22. Prusak, A., Melnychuk, O., Roth, H., Schiller, I., and Koch, R. (2008). Pose estimation and map building with a time-of-flight camera for robot navigation. Int. Journal Intell. Syst. Technol. Appl., 5(3/4):355-364.
  23. Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng, A. Y. (2009). ROS: an open-source robot operating system. ICRA Workshop on Open Source Software.
  24. Rocha, R. P., Portugal, D., Couceiro, M., Araujo, F., Menezes, P., and Lobo, J. (2013). The CHOPIN project: Cooperation between Human and rObotic teams in catastroPhic INcidents. SSRR, pages 1-4.
  25. Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner detection. In European Conf. on Computer Vision, pages 430-443.
  26. Rusu, R. and Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). ICRA, pages 1-4.
  27. Satake, J. and Miura, J. (2009). Multiple-Person Tracking for a Mobile Robot Using Stereo. MVA Conf., pages 273-277.
  28. Soni, B. and Sowmya, A. (2013). Victim detection and localisation in an urban disaster site. ROBIO, pages 2142-2147.
  29. Spinello, L. and Arras, K. O. (2011). People detection in RGB-D data. IROS, pages 3838-3843.
  30. Triebel, R. and Burgard, W. (2005). Improving simultaneous localization and mapping in 3D using global constraints. AAAI, 20(3):1330.
  31. Triggs, B., Mclauchlan, P., Hartley, R., and Fitzgibbon, A. (2000). Bundle adjustment - a modern synthesis. Vision Algorithms: Theory and Practice, LNCS, pages 298-375.
Download


Paper Citation


in Harvard Style

F. Sales F., Portugal D. and P. Rocha R. (2014). Real-time People Detection and Mapping System for a Mobile Robot using a RGB-D Sensor . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-040-6, pages 467-474. DOI: 10.5220/0005060604670474


in Bibtex Style

@conference{icinco14,
author={Francisco F. Sales and David Portugal and Rui P. Rocha},
title={Real-time People Detection and Mapping System for a Mobile Robot using a RGB-D Sensor},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2014},
pages={467-474},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005060604670474},
isbn={978-989-758-040-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Real-time People Detection and Mapping System for a Mobile Robot using a RGB-D Sensor
SN - 978-989-758-040-6
AU - F. Sales F.
AU - Portugal D.
AU - P. Rocha R.
PY - 2014
SP - 467
EP - 474
DO - 10.5220/0005060604670474