Real-time People Detection and Mapping System for a Mobile Robot using a RGB-D Sensor
Francisco F. Sales, David Portugal, Rui P. Rocha
2014
Abstract
In this paper, we present a robotic system capable of mapping indoor, cluttered environments and, simultaneously, detecting people and localizing them with respect to the map, in real-time, using solely a Red-Green-Blue and Depth (RGB-D) sensor, the Microsoft Kinect, mounted on top of a mobile robotic platform running Robot Operating System (ROS). The system projects depth measures in a plane for mapping purposes, using a grid-based Simultaneous Localization and Mapping (SLAM) approach, and pre-processes the sensor’s point cloud to lower the computational load of people detection, which is performed using a classical technique based on Histogram of Oriented Gradients (HOG) features, and a linear Support Vector Machine (SVM) classifier. Results show the effectiveness of the approach and the potential to use the Kinect in real world scenarios.
References
- Bajracharya, M., Moghaddam, B., Howard, A., Brennan, S., and Matthies, L. H. (2009). A fast stereo-based system for detecting and tracking pedestrians from a moving vehicle. Int. Journal of Robotics Research, 28(11-12):1466-1485.
- Clemente, L., Davison, A., Reid, I., Neira, J., and Tardó s, J. D. (2007). Mapping large loops with a single handheld camera. Proc. Robotics: Science and Systems Conf.
- Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. Int. Conf. on Computer Vision & Pattern Recognition, 2:886-893.
- Dissanayake, M. G., Newman, P., Clark, S., DurrantWhyte, H. F., and Csorba, M. (2001). A solution to the simultaneous localization and map building (SLAM) problem. Rob. & Automation, IEEE Tr. on, 17(3):229- 241.
- Droeschel, D., May, S., Holz, D., Ploeger, P., and Behnke, S. (2009). Robust ego-motion estimation with ToF cameras. European Conf. on Mobile Robots, pages 187-192.
- Ferreira, J. F., Lobo, J., Bessière, P., Castelo-Branco, M., and Dias, J. (2013). A Bayesian framework for active artificial perception. IEEE Trans. on Cybernetics (Part B), 43(2):699-711.
- Fischler, M. A. and Bolles, R. C. (1981). RANdom SAmple Consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. of the ACM, 24(6):381-395.
- Grisetti, G., Stachniss, C., and Burgard, W. (2007). Improved techniques for grid mapping with RaoBlackwellized particle filters. IEEE Trans. on Robotics, 23:2007.
- Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2010). RGB-D mapping: Using depth cameras for dense 3D modeling of indoor environments. Experimental Robotics, 79:477-491.
- Keller, C. G., Enzweiler, M., Rohrbach, M., Fernandez Llorca, D., Schnorr, C., and Gavrila, D. M. (2011). The benefits of dense stereo for pedestrian detection. ITS, IEEE Trans. on, 12(4):1096-1106.
- Konolige, K. and Agrawal, M. (2008). FrameSLAM: From bundle adjustment to real-time visual mapping. Robotics, IEEE Trans. on, 24(5):1066-1077.
- Kuemmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011). g2o: A general framework for graph optimization. ICRA, pages 3607-3613.
- Levi, K. and Weiss, Y. (2004). Learning object detection from a small number of examples: the importance of good features. CVPR, pages 53-60.
- Llorca, D., Sotelo, M., Hellín, A., Orellana, A., Gavilan, M., Daza, I., and Lorente, A. (2012). Stereo regionsof-interest selection for pedestrian protection: A survey. Transportation research part C: emerging technologies, 25:226-237.
- Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. Int. Journal Computer Vision, 60(2):91-110.
- May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nü chter, A., and Hertzberg, J. (2009). 3D mapping with ToF cameras. Journal of Field Robotics, sp. issue on 3D Mapping.
- Menezes, P., Brethes, L., Lerasle, F., Danes, P., and Dias, J. (2003). Visual tracking of silhouettes for human-robot interaction. pages 971-976.
- Michael Calonder, Vincent Lepetit, and Pascal Fua (2008). Keypoint signatures for fast learning and recognition. In European Conf. on Computer Vision.
- Munaro, M., Basso, F., and Menegatti, E. (2012). Tracking people within groups with RGB-D data. IROS, pages 2101-2107.
- Portugal, D. and Rocha, R. P. (2013). Distributed multirobot patrol: A scalable and fault-tolerant framework. Robotics & Auton. Syst., 61(12):1572-1587.
- Premebida, C., Ludwig, O., and Nunes, U. (2009). Lidar and vision-based pedestrian detection system. Journal of Field Robotics, 26(9):696-711.
- Prusak, A., Melnychuk, O., Roth, H., Schiller, I., and Koch, R. (2008). Pose estimation and map building with a time-of-flight camera for robot navigation. Int. Journal Intell. Syst. Technol. Appl., 5(3/4):355-364.
- Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., and Ng, A. Y. (2009). ROS: an open-source robot operating system. ICRA Workshop on Open Source Software.
- Rocha, R. P., Portugal, D., Couceiro, M., Araujo, F., Menezes, P., and Lobo, J. (2013). The CHOPIN project: Cooperation between Human and rObotic teams in catastroPhic INcidents. SSRR, pages 1-4.
- Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner detection. In European Conf. on Computer Vision, pages 430-443.
- Rusu, R. and Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). ICRA, pages 1-4.
- Satake, J. and Miura, J. (2009). Multiple-Person Tracking for a Mobile Robot Using Stereo. MVA Conf., pages 273-277.
- Soni, B. and Sowmya, A. (2013). Victim detection and localisation in an urban disaster site. ROBIO, pages 2142-2147.
- Spinello, L. and Arras, K. O. (2011). People detection in RGB-D data. IROS, pages 3838-3843.
- Triebel, R. and Burgard, W. (2005). Improving simultaneous localization and mapping in 3D using global constraints. AAAI, 20(3):1330.
- Triggs, B., Mclauchlan, P., Hartley, R., and Fitzgibbon, A. (2000). Bundle adjustment - a modern synthesis. Vision Algorithms: Theory and Practice, LNCS, pages 298-375.
Paper Citation
in Harvard Style
F. Sales F., Portugal D. and P. Rocha R. (2014). Real-time People Detection and Mapping System for a Mobile Robot using a RGB-D Sensor . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-758-040-6, pages 467-474. DOI: 10.5220/0005060604670474
in Bibtex Style
@conference{icinco14,
author={Francisco F. Sales and David Portugal and Rui P. Rocha},
title={Real-time People Detection and Mapping System for a Mobile Robot using a RGB-D Sensor},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2014},
pages={467-474},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005060604670474},
isbn={978-989-758-040-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Real-time People Detection and Mapping System for a Mobile Robot using a RGB-D Sensor
SN - 978-989-758-040-6
AU - F. Sales F.
AU - Portugal D.
AU - P. Rocha R.
PY - 2014
SP - 467
EP - 474
DO - 10.5220/0005060604670474