Measure of Roughness for Rough Approximation of Fuzzy Sets and Its Topological Interpretation
Alexander Šostak
2014
Abstract
We define the measure of upper and the measure of lower rough approximation for L-fuzzy subsets of a set equipped with a reflexive transitive fuzzy relation R. In case when the relation R is also symmetric, these measures coincide and we call their value by the measure of roughness of rough approximation. Basic properties of such measures are studied. A realization of measures of rough approximation in terms of L-fuzzy topologies is presented.
References
- Birkhoff, G . Lattice Theory, AMS Providence, RI, (1995)
- Brown, L.M., Ertürk, R. Dost S¸ . Ditopological texture spaces and fuzzy topology, I. Basic concepts, Fuzzy Sets and Syst. 110, 227-236 (2000).
- Ciucci, D. Approximation algebra and framework, Fund. Inform. 94(2) (2009) 147-161.
- Chang, C.L. Fuzzy topological spaces, J. Math. Anal. Appl. 24, 182-190 (1968)
- Chen, P., Zhang, D. Alexandroff L-cotopological spaces, Fuzzy Sets and Systems 161 (2010) 2505 - 2514.
- Ciucci, D. Approximation algebra and framework, Fund. Inform. 94(2) (2009) 147-161.
- Gierz, G., Hoffman, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S. Continuous Lattices and Domains, Cambridge Univ. Press, Cambridge, 2003
- Goguen, J.A. The fuzzy Tychonoff theorem, J. Math. Anal. Appl. 43 (1973) 734-742.
- Dubois, D., Prade, H. Rough fuzzy sets and fuzzy rough sets, International J. General Systems 17 (2-3) (1990) 191-209.
- E¸lkins, A., S?ostak, A. On some categories of approximate systems generated by L-relations. In: 3rd Rough Sets Theory Workshop, pp. 14-19 Milan, Italy (2011)
- Hao J., Li Q. The relation between L-fuzzy rough sets and L-topology, Fuzzy Sets and Systems, 178 (2011)
- Höhle U. Commutative residuated l-monoids, in: U. Höhle abd E.P. Klement eds., Nonclassical Logics and their Appl. to Fuzzy Subsets, 53-106, Kluwer Acad. Publ., Docrecht, Boston, 1995.
- Järvinen J. On the structure of rough approximations, Fund. Inform. 53 (2002) 135-153.
- Järvinen J., Kortelainen J. A unified study between modallike operators, topologies and Fuzzy Sets, Fuzzy Sets and Systems 158 (2007) 1217-1225.
- Kaufman A. Theory of Fuzzy Subsets, Academic Press, New York, 1975.
- Klement, E.P., Mesiar, R., Pap, E. Kluwer Acad. Publ. (2000)
- Kortelainen J. On relationship between modified sets, topological spaces and rough sets, Fuzzy Sets and Systems 61 (1994) 91-95.
- Kubiak T. On fuzzy topologies, PhD Thesis, Adam Mickiewicz University Poznan, Poland (1985)
- Menger K. Geometry and positivism - a probabilistic microgeometry, Selected Papers in Logic, Foundations, Didactics, Economics, Reidel, Dodrecht, 1979.
- Mi J.S., Hu B.Q. Topological and lattice structure of Lfuzzy rough stes determined by upper and lower sets, Information Sciences 218 (2013) 194-204.
- Pawlak, Z. Rough sets, Intern. J. of Computer and Inform. Sci. 11, 341-356 (1982)
- Qin K., Pei Z. On the topological properties of fuzzy rough sets, Fuzzy Sets and Systems 151 (2005) 601-613.
- Qin K., Pei Z. Generalized rough sets based on reflexive and transitive relations, Information Sciences 178 (2008) 4138-4141.
- Radzikowska, A.M., Kerre, E.E. A comparative study of fuzzy rough sets. Fuzzy Sets and Syst. 126, 137-155 (2002)
- Rosenthal, K.I. Quantales and Their Applications. Pirman Research Notes in Mathematics 234. Longman Scientific & Technical (1990)
- Schweitzer, B., Sklar, A. Probabilistic Metric Spaces. North Holland, New York (1983).
- S?ostak, A. On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo, Ser II 11, 125-186 (1980). Russian Math. Surveys 44 (1989) 125-186
- S?ostak, A. Two decades of fuzzy topology: Basic ideas, notions and results, Russian Math. Surveys 44 (1989) 125-186
- S?ostak, A. Basic structures of fuzzy topology, J. Math. Sci. 78 (1996) 662-701.
- S?ostak A. Towards the theory of M-approximate systems: Fundamentals and examples. Fuzzy Sets and Syst. 161, 2440-2461 (2010)
- S?ostak, A. Towards the theory of approximate systems: variable range categories. In: Proceedings of ICTA2011, Islamabad, Pakistan. pp. 265-284. Cambridge University Publ. (2012)
- Tiwari, S.P., Srivastava, A.K. Fuzzy rough sets. fuzzy preoders and fuzzy topoloiges, Fuzzy Sets and Syst., 210 (2013), 63-68.
- Valverde, L. On the structure of F -indistinguishability operators, Fuzzy Sets and Syst. 17, 313-328 (1985)
- Yao, Y.Y. A comparative study of fuzzy sets and rough sets. Inf. Sci. 109, 227-242 (1998)
- Yao, Y.Y. On generalizing Pawlak approximation operators. In: Proc. First Intern. Conf. Rough Sets and Current Trends in Computing. pp. 298-307 (1998)
- Yu H., Zhan W.R. On the topological properties of generalized rough sets, Information Sciences 263 (2014), 141-152.
- Zadeh L. Similarity relations and fuzzy orderings, Inf. Sci. 3 (1971) 177-200.
Paper Citation
in Harvard Style
Šostak A. (2014). Measure of Roughness for Rough Approximation of Fuzzy Sets and Its Topological Interpretation . In Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014) ISBN 978-989-758-053-6, pages 61-67. DOI: 10.5220/0005080400610067
in Bibtex Style
@conference{fcta14,
author={Alexander Šostak},
title={Measure of Roughness for Rough Approximation of Fuzzy Sets and Its Topological Interpretation},
booktitle={Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014)},
year={2014},
pages={61-67},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005080400610067},
isbn={978-989-758-053-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Fuzzy Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2014)
TI - Measure of Roughness for Rough Approximation of Fuzzy Sets and Its Topological Interpretation
SN - 978-989-758-053-6
AU - Šostak A.
PY - 2014
SP - 61
EP - 67
DO - 10.5220/0005080400610067