Chive: A Simulation Tool for Epidemic Data Replication Protocols Benchmarking
A. Jiménez-Yáñez, J. Navarro, F. D. Muñoz-Escoí, I. Arrieta-Salinas, J. E. Armendáriz-Iñigo
2014
Abstract
Epidemic data replication protocols are an interesting approach to address the scalability limitations of classic distributed databases. However, devising a system layout that takes full advantage of epidemic replication is a challenging task due to the high number of associated configuration parameters (e.g., replication layers, number of replicas per layer, etc.). The purpose of this paper is to present a Java-based simulation tool that simulates the execution of epidemic data replication protocols on user-defined configurations under different workloads. Conducted experiments show that by using the proposed approach (1) the internal dynamics of epidemic data replication protocols under a specific scenario are better understood, (2) the distributed database system design process is considerably speeded up, and (3) different system configurations can be rapidly prototyped.
References
- Agrawal, D., El Abbadi, A., and Steinke, R. C. (1997). Epidemic algorithms in replicated databases (extended abstract). In 16th ACM Symp. on Principles of Database Syst. (PODS), pages 161-172, Tucson, Arizona, USA. ACM Press.
- Apache Software Foundation (2014). Apache Cassandra Gossiper documentation. http://wiki.apache.org/cassandra/ArchitectureGossip/.
- Arrieta-Salinas, I., Armendáriz-In˜igo, J. E., and Navarro, J. (2012). Classic replication techniques on the cloud. In Seventh International Conference on Availability, Reliability and Security, Prague, ARES 2012, Czech Republic, August 20-24, 2012, pages 268-273.
- Bailis, P., Davidson, A., Fekete, A., Ghodsi, A., Hellerstein, J. M., and Stoica, I. (2013). Highly available transactions: Virtues and limitations. PVLDB, 7(3):181-192.
- Bakhshi, R. (2011). Gossiping Models: Formal Analysis of Epidemic Protocols. PhD thesis, Vrije Universiteit, Amsterdam.
- Baldoni, R., Guerraoui, R., Levy, R. R., Quéma, V., and Piergiovanni, S. T. (2006). Unconscious eventual consistency with gossips. In Proceedings of the 8th International Conference on Stabilization, Safety, and Security of Distributed Systems, SSS'06, pages 65-81, Berlin, Heidelberg. Springer-Verlag.
- Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439):509- 512.
- Bernstein, P. A., Hadzilacos, V., and Goodman, N. (1987). Concurrency Control and Recovery in Database Systems. Addison-Wesley.
- Chockler, G., Keidar, I., and Vitenberg, R. (2001). Group communication specifications: a comprehensive study. ACM Computing Surveys, 33(4):427-469.
- Das, S., Agarwal, S., Agrawal, D., and Abbadi, A. E. (2010). ElasTraS: An elastic, scalable, and self managing transactional database for the cloud. Technical report, CS, UCSB.
- Daudjee, K. and Salem, K. (2006). Lazy database replication with snapshot isolation. In 32nd Intnl. Conf.
- Davidson, S. B., Garcia-Molina, H., and Skeen, D. (1985). Consistency in partitioned networks. ACM Comput. Surv., 17(3):341-370.
- Eugster, P. T., Guerraoui, R., m. Kermarrec, A., and Massouli, L. (2004). From epidemics to distributed computing. IEEE Computer, 37:60-67.
- Fekete, A. D. and Ramamritham, K. (2010). Consistency models for replicated data. In Replication, pages 1- 17.
- Gilbert, S. and Lynch, N. A. (2002). Brewer's conjecture and the feasibility of consistent, available, partitiontolerant web services. SIGACT News, 33(2):51-59.
- Gilbert, S. and Lynch, N. A. (2012). Perspectives on the CAP theorem. IEEE Computer, 45(2):30-36.
- Holliday, J., Steinke, R. C., Agrawal, D., and El Abbadi, A. (2003). Epidemic algorithms for replicated databases. IEEE Trans. Knowl. Data Eng., 15(5):1218-1238.
- JChart2D (2014). JChart2D, precise visualization of data. http://jchart2d.sourceforge.net/.
- Johnson, R., Pandis, I., and Ailamaki, A. (2014). Eliminating unscalable communication in transaction processing. The VLDB Journal, 23:1-23.
- JUNG (2014). JUNG - Java Universal Network/Graph Framework. http://jung.sourceforge.net/.
- Lamport, L. (1979). How to make a multiprocessor computer that correctly executes multiprocess programs. IEEE Trans. Computers, 28(9):690-691.
- Lin, Y., Kemme, B., Jiménez-Peris, R., Patin˜o-Martínez, M., and Armendáriz-In˜igo, J. E. (2009). Snapshot isolation and integrity constraints in replicated databases. ACM Trans. Database Syst., 34(2).
- Navarro, J., Armendáriz-In˜igo, J. E., and Climent, A. (2011). An adaptive and scalable replication protocol on power smart grids. Scalable Computing: Practice and Experience, 12(3).
- Sancho-Asensio, A., Navarro, J., Arrieta-Salinas, I., Armendáriz-In˜igo, J. E., Jiménez-Ruano, V., Zaballos, A., and Golobardes, E. (2014). Improving data partition schemes in smart grids via clustering data streams. Expert Systems with Applications, 41(13):5832 - 5842.
- Shoens, K. A. (1986). Data sharing vs. partitioning for capacity and availability. IEEE Database Eng. Bull., 9(1):10-16.
- Stonebraker, M. (1986). The case for shared nothing. IEEE Database Eng. Bull., 9(1):4-9.
- Stonebraker, M. (2010). SQL databases v. NoSQL databases. Communications of the ACM, 53(4):10-11.
- Terry, D. B. (2008). Replicated data management for mobile computing. Synthesis Lectures on Mobile and Pervasive Computing, 3(1):1-94.
- Terry, D. B., Demers, A. J., Petersen, K., Spreitzer, M., Theimer, M., and Welch, B. B. (1994). Session guarantees for weakly consistent replicated data. In 13th Intnl. Conf. Paral. Dist. Inform. Syst. (PDIS), pages 140-149, Austin, Texas, USA. IEEE-CS Press.
- Vogels, W. (2009). Eventually consistent. Commun. ACM, 52(1):40-44.
- Wiesmann, M. and Schiper, A. (2005). Comparison of database replication techniques based on total order broadcast. IEEE TKDE, 17(4):551-566.
Paper Citation
in Harvard Style
Jiménez-Yáñez A., Navarro J., Muñoz-Escoí F., Arrieta-Salinas I. and Armendáriz-Iñigo J. (2014). Chive: A Simulation Tool for Epidemic Data Replication Protocols Benchmarking . In Proceedings of the 9th International Conference on Software Engineering and Applications - Volume 1: ICSOFT-EA, (ICSOFT 2014) ISBN 978-989-758-036-9, pages 428-436. DOI: 10.5220/0005107004280436
in Bibtex Style
@conference{icsoft-ea14,
author={A. Jiménez-Yáñez and J. Navarro and F. D. Muñoz-Escoí and I. Arrieta-Salinas and J. E. Armendáriz-Iñigo},
title={Chive: A Simulation Tool for Epidemic Data Replication Protocols Benchmarking},
booktitle={Proceedings of the 9th International Conference on Software Engineering and Applications - Volume 1: ICSOFT-EA, (ICSOFT 2014)},
year={2014},
pages={428-436},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005107004280436},
isbn={978-989-758-036-9},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 9th International Conference on Software Engineering and Applications - Volume 1: ICSOFT-EA, (ICSOFT 2014)
TI - Chive: A Simulation Tool for Epidemic Data Replication Protocols Benchmarking
SN - 978-989-758-036-9
AU - Jiménez-Yáñez A.
AU - Navarro J.
AU - Muñoz-Escoí F.
AU - Arrieta-Salinas I.
AU - Armendáriz-Iñigo J.
PY - 2014
SP - 428
EP - 436
DO - 10.5220/0005107004280436