Quantile Estimation When Applying Conditional Monte Carlo
Marvin K. Nakayama
2014
Abstract
We describe how to use conditional Monte Carlo (CMC) to estimate a quantile. CMC is a variance-reduction technique that reduces variance by analytically integrating out some of the variability. We show that the CMC quantile estimator satisfies a central limit theorem and Bahadur representation. We also develop three asymptotically valid confidence intervals (CIs) for a quantile. One CI is based on a finite-difference estimator, another uses batching, and the third applies sectioning. We present numerical results demonstrating the effectiveness of CMC.
References
- Asmussen, S. and Glynn, P. (2007). Stochastic Simulation: Algorithms and Analysis. Springer, New York.
- Bahadur, R. R. (1966). A note on quantiles in large samples. Annals of Mathematical Statistics, 37:577-580.
- Billingsley, P. (1995). Probability and Measure. John Wiley & Sons, New York, third edition.
- Bloch, D. A. and Gastwirth, J. L. (1968). On a simple estimate of the reciprocal of the density function. Annals of Mathematical Statistics, 39:1083-1085.
- Bofinger, E. (1975). Estimation of a density function using order statistics. Australian Journal of Statistics, 17:1- 7.
- Chu, F. and Nakayama, M. K. (2012). Confidence intervals for quantiles when applying variance-reduction techniques. ACM Transactions On Modeling and Computer Simulation, 36:Article 7 (25 pages plus 12-page online-only appendix).
- Falk, M. (1986). On the estimation of the quantile density function. Statistics & Probability Letters, 4:69-73.
- Fu, M. C., Hong, L. J., and Hu, J.-Q. (2009). Conditional Monte Carlo estimation of quantile sensitivities. Management Science, 55:2019-2027.
- Ghosh, J. K. (1971). A new proof of the Bahadur representation of quantiles and an application. Annals of Mathematical Statistics, 42:1957-1961.
- Jorion, P. (2007). Value at Risk: The New Benchmark for Managing Financial Risk, 3rd Edition. McGraw-Hill.
- Mood, A. M., Graybill, F. A., and Boes, D. C. (1974). Introduction to the Theory of Statistics. McGraw-Hill, New York, 3rd edition.
- Nakayama, M. K. (2014a). Confidence intervals using sectioning for quantiles when applying variancereduction techniques. ACM Transactions on Modeling and Computer Simulation. To appear.
- Nakayama, M. K. (2014b). Efficient quantile estimation using conditional Monte Carlo. In preparation.
- Ortega, J. M. and Rheinboldt, W. C. (1987). terative Solution of Nonlinear Equations in Several Variables. SIAM.
- Ross, S. M. (2006). Simulation. Academic Press, San Diego, CA, fourth edition.
- Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. John Wiley & Sons, New York.
- U.S. Nuclear Regulatory Commission (1989). Bestestimate calculations of emergency core cooling performance. Nuclear Regulatory Commission Regulatory Guide 1.157, U.S. Nuclear Regulatory Commission, Washington, DC.
- U.S. Nuclear Regulatory Commission (2011). Applying statistics. U.S. Nuclear Regulatory Commission Report NUREG-1475, Rev 1, U.S. Nuclear Regulatory Commission, Washington, DC.
Paper Citation
in Harvard Style
K. Nakayama M. (2014). Quantile Estimation When Applying Conditional Monte Carlo . In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-038-3, pages 280-285. DOI: 10.5220/0005109702800285
in Bibtex Style
@conference{simultech14,
author={Marvin K. Nakayama},
title={Quantile Estimation When Applying Conditional Monte Carlo},
booktitle={Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2014},
pages={280-285},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005109702800285},
isbn={978-989-758-038-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Quantile Estimation When Applying Conditional Monte Carlo
SN - 978-989-758-038-3
AU - K. Nakayama M.
PY - 2014
SP - 280
EP - 285
DO - 10.5220/0005109702800285