Adaptive LQG/LTR Control; Discontinuity Issue

Dariusz Horla, Andrzej Krolikowski

2014

Abstract

An adaptive LQG control with no control cost is considered. In such case the loop transfer recovery (LTR) effect can be obtained. The control problem is handled using discrete-time state-space model and the parameter estimation is performed for corresponding ARMAX model which can be represented in innovation state-space form. Thus the direct estimation of model parameters is possible by means of standard ERLS procedure and the adaptive control is implemented through {\em certainty equivalence principle}. In such a situation the problem of solution continuity of Riccati equation can arise for nonminimum-phase systems. Computer simulations of third-order systems modeled by a second-order minimum-phase and nonminimum-phase models are given to illustrate the robustness and performance properties of the adaptive controller, particularly with respect to the modelling error parameter $\eta$.

References

  1. Bitmead, R., Gevers, M., and Wertz, V. (1990). Adaptive Optimal Control. Prentice Hall International.
  2. Duncan, T. and B.Pasik-Duncan (1999).
  3. IEEE Trans. Automat. Contr., 44(9):1653-1665.
  4. Krolikowski, A. (1995). Amplitude constrained adaptive LQG control of first order systems. Int.J.Adapt.Contr.Sign.Proc., 9(3):285-299.
  5. Kumar, P. (1983). Optimal adaptive control of linearquadratic-gaussian systems. SIAM J. Control and Optimization, 21(2):163-178.
  6. Maciejowski, J. (1985). Asymptotic recovery for discretetime systems. IEEE Trans. Automat. Contr., 30(6):602-605.
  7. Mäkilä, P., Westerlund, T., and Toivonen, H. (1984). Constrained linear quadratic gaussian control with process applications. Automatica, 20(1):15-29.
  8. Nilsson, M. and Egardt, B. (2010). Comparing recursive estimators in the presence of unmodeled dynamics. In Proc. IFAC Symp. ALCOSP, pages 135-149, Antalya, Turkey.
  9. Saberi, A. and Stoorvogel, A. A. (1996). Continuity properties of solutions to h2 and h8 riccati equations. Systems and Control Letters., 27(4):209-222.
  10. Tadjine, M., M'Saad, M., and Dugard, L. (1994). Discretetime compensators with loop transfer recovery. IEEE Trans. Automat. Contr., 39(6):1259-1262.
  11. Tay, T. and Moore, J. (1989). Loop recovery via h8/h2 sensitivity recovery. Int.J.Control, 49(4):1249-1271.
  12. Tay, T. and Moore, J. (1991). Adaptive LQG controller with loop transfer recovery. Int.J.Adapt.Contr.Sign.Proc., 5(2):135-149.
Download


Paper Citation


in Harvard Style

Horla D. and Krolikowski A. (2014). Adaptive LQG/LTR Control; Discontinuity Issue . In Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-039-0, pages 802-807. DOI: 10.5220/0005121408020807


in Bibtex Style

@conference{icinco14,
author={Dariusz Horla and Andrzej Krolikowski},
title={Adaptive LQG/LTR Control; Discontinuity Issue},
booktitle={Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2014},
pages={802-807},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005121408020807},
isbn={978-989-758-039-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Adaptive LQG/LTR Control; Discontinuity Issue
SN - 978-989-758-039-0
AU - Horla D.
AU - Krolikowski A.
PY - 2014
SP - 802
EP - 807
DO - 10.5220/0005121408020807