A Novel Neural Network Computing Based Way to Sensor and Method Fusion in Harsh Operational Environments

Yuriy V. Shkvarko, Juan I. Yañez, Gustavo D. Martín del Campo

2014

Abstract

We address a novel neural network computing-based approach to the problem of near real-time feature enhanced fusion of remote sensing (RS) imagery acquired in harsh sensing environments. The novel proposition consists in adapting the Hopfield-type maximum entropy neural network (MENN) computational framework to solving the RS image fusion inverse problem. The feature enhanced fusion is performed via aggregating the descriptive experiment design with the variational analysis (VA) inspired regularization frameworks that lead to an adaptive procedure for proper adjustments of the MENN synaptic weights and bias inputs. We feature on the considerably speeded-up implementation of the MENN-based RS image fusion and verify the overall image enhancement efficiency via computer simulations with real-world RS imagery.

References

  1. Curlander J.C., McDonough R.: Synthetic Aperture Radar--System and Signal Processing. Wiley, NY (1991)
  2. Franceschetti G., Landari R.: Synthetic Aperture Radar Processing. Wiley, NY (2005)
  3. Henderson F.M. A., Lewis V., Eds.: Principles and Applications of Imaging Radar, Manual of Remote Sensing, 3d ed., vol. 3, Willey, NY (1998)
  4. Wehner D.R.: High-Resolution Radar, 2nd ed., Artech House, Boston, MA (1994)
  5. Barrett H.H., Myers K.J.: Foundations of Image Science, Willey, NY (2004)
  6. Lee J. S.: Speckle Suppression and Analysis for Synthetic Aperture Radar Images, Optical Engineering, vol. 25, no. 5, (1986) 636-643
  7. Franceschetti G., Iodice A., Perna S., Riccio D.: Efficient Simulation of Airborne SAR Raw Data of Extended Scenes, vol. 44. No. 10. IEEE Trans. Geoscience and Remote Sensing (Oct. 2006) 2851-2860
  8. Ishimary A.: Wave Propagation and Scattering in Random Media. IEEE Press, NY (1997)
  9. Farina A.: Antenna-Based Signal Processing Techniques for Radar Systems, Artech House, Norwood, MA (1991)
  10. Shkvarko Y.V.: Estimation of Wavefield Power Distribution in the Remotely Sensed Environment: Bayesian Maximum Entropy Approach, vol. 50, No. 9. IEEE Trans. Signal Proc. (Sep. 2002) 2333-2346,
  11. Shkvarko Y.V., Shmaliy Y. S., Jaime-Rivas R. Torres-Cisneros M.: System Fusion in Passive Sensing Using a Modified Hopfield Network, vol. 338. Journal of the Franklin Institute (2000) 405-427
  12. Shkvarko Y.V., Santos S.R., Tuxpan J.: Near Real-Time Enhancement of Fractional SAR Imagery via Adaptive Maximum Entropy Neural Network Computing, 2012 9th European Conference on Synthetic Aperture Radar (EUSAR'2012), ISBN: 978-3-8008-3404-7, Nurnberg, Germany (Apr. 2012) 792-795
  13. Perona P. Malik J.: Scale-Space and Edge detection Using Anisotropic Diffusion, vol. 12. No. 7. IEEE Trans. Pattern Anal. Machine Intell. (July 1990) 629-639
  14. Patel V.M., Easley G.R., Healy D.M., Chellappa R.: Compressed Synthetic Aperture Radar, vol. 4. No. 2. IEEE Journal of Selected Topics in Signal Proc. (2010) 244-254
  15. Yarbidi T., J. Stoica Li, Xue P. M. Baggeroer A.B.: Source Localization and Sensing: A Nonparametric Iterative Adaptive Approach Based on Weighted Least Squares, vol. 46, No. 1. IEEE Trans. Aerospace and Electronic Syst. (2010) 425-443
  16. Shkvarko Y.V., Tuxpan J., Santos S.R.: Dynamic Experiment Design Regularization Approach to Adaptive Imaging with Array Radar/SAR Sensor Systems, Sensors, no 5, (2011) 4483-4511
  17. Shkvarko Y.V., Tuxpan J., Santos S.R.: High-Resolution Imaging with Uncertain Radar Measurement Data: A Doubly Regularized Compressive Sensing Experiment Design Approach, in Proc. IEEE 2012 IGARS Symposium, ISBN: 978-1-467311-51/12, Munich, Germany (July 2012) 6976-6970
  18. Mathews J.H.: Numerical Methods for Mathematics, Science, and Engineering, Second Edition, Prentice Hall, Englewood Cliffs, NJ (1992)
  19. Ponomaryov V., Rosales A., Gallegos F., Loboda I.: Adaptive Vector Directional filters to Process Multichannel Images, vol. E90-B, No. 2. IEICE Trans. Communications (Feb. 2007) 429-430
  20. TERRAX-SAR Images, Available at: http://www.astrium-geo.com/en/19-galery?img=1690 &search=gallery&type=0&sensor=26&resolution=0&continent=0&application=0&theme=0
Download


Paper Citation


in Harvard Style

Shkvarko Y., Yañez J. and Martín del Campo G. (2014). A Novel Neural Network Computing Based Way to Sensor and Method Fusion in Harsh Operational Environments . In Proceedings of the International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2014) ISBN 978-989-758-041-3, pages 19-26. DOI: 10.5220/0005125100190026


in Bibtex Style

@conference{anniip14,
author={Yuriy V. Shkvarko and Juan I. Yañez and Gustavo D. Martín del Campo},
title={A Novel Neural Network Computing Based Way to Sensor and Method Fusion in Harsh Operational Environments},
booktitle={Proceedings of the International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2014)},
year={2014},
pages={19-26},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005125100190026},
isbn={978-989-758-041-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2014)
TI - A Novel Neural Network Computing Based Way to Sensor and Method Fusion in Harsh Operational Environments
SN - 978-989-758-041-3
AU - Shkvarko Y.
AU - Yañez J.
AU - Martín del Campo G.
PY - 2014
SP - 19
EP - 26
DO - 10.5220/0005125100190026