'Mind Reading': Hitting Cognition by Using ANNs to Analyze fMRI Data in a Paradigm Exempted from Motor Responses

José Paulo Marques dos Santos, Luiz Moutinho, Miguel Castelo-Branco

2014

Abstract

The main goal of the present study is to launch the foundations of a pipeline for fMRI-based human behavior classification, addressing however some particularities of cognitive processes. While studying cognition, much of the experiments with fMRI use devices to record subjects’ responses, which recruits the participation of the motor cortex. Although the influence of this aspect may be reduced in subtractive univariate analyses methods, it may negatively interfere in multivariate methods. The fMRI data here used is exempted of motor responses. Subjects were asked to form impressions about persons, objects, and brands, but their thoughts were not recorded by devices. The feedforward backpropagation artificial neural network was used. With this procedure it was possible to correctly classify above randomness. The analysis of the hidden nodes reveals the extensive participation of the fusiform gyri and lateral occipital cortex in this cognitive process, corroborating the critical participation of these structures during classification in the natural brain.

References

  1. Pereira, F., Mitchell, T.M., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45, S199-S209 (2009)
  2. Mitchell, T. M., Hutchinson, R., Niculescu, R. S., Pereira, F., Wang, X., Just, M., Newman, S.: Learning to Decode Cognitive States from brain images. Machine Learning 57, 145-175 (2004)
  3. Haynes, J.-D., Rees, G.: Decoding mental states from brain activity in humans. Nature Reviews Neuroscience 7, 523-534 (2006)
  4. Hanson, S. J., Matsuka, T., Haxby, J. V.: Combinatorial Codes in Ventral Temporal lobe for Object Recognition: Haxby (2001) revisited: is there a "face" area? Neuroimage 23, 156-166 2004
  5. Misaki, M., Miyauchi, S.: Application of artificial neural network to fMRI regression analysis. Neuroimage 29, 396-408 (2006)
  6. Sona, D., Veeramachaneni, S., Olivetti, E., Avesani, P.: Inferring Cognition from fMRI Brain Images. In: Marques de Sá, J., Alexandre, L., Duch, W., Mandic, D. (eds.) Artificial Neural Networks - ICANN 2007, vol.4669, pp.869-878. Springer Berlin/ Heidelberg, 2007
  7. Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America 102, 9673-9678 (2005)
  8. Pereira, F., Botvinick, M.: Information mapping with pattern classifiers: a comparative study. Neuroimage 56, 476-496 (2011)
  9. Misaki, M., Kim, Y., Bandettini, P.A., Kriegeskorte, N.: Comparison of multivariate classifiers and Response Normalizations for Pattern-information fMRI. Neuroimage 53, 103-118 (2010)
  10. Hacker, C.D., Laumann, T.O., Szrama, N.P., Baldassarre, A., Snyder, A.Z., Leuthardt, E.C., Corbetta, M.: Resting state network estimation in individual subjects. NeuroImage 82, 616-633 (2013)
  11. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D.A., Shulman, G. L.: A default mode of brain function. Proceedings of the National Academy of Sciences 98, 676-682 (2001)
  12. Santos, J. P., Moutinho, L.: Tackling the cognitive processes that underlie brands' assessments using artificial neural networks and whole brain fMRI acquisitions. 2011 IEEE International Workshop on Pattern Recognition in NeuroImaging (PRNI), pp. 9-12. IEEE Computer Society, Seoul, Republic of Korea (2011)
  13. Mitchell, J. P., Macrae, C. N., Banaji, M. R.: Forming impressions of people versus inanimate objects: social-cognitive processing in the medial prefrontal cortex. Neuroimage 26, 251-257 (2005)
  14. Russell, J. A., Mehrabian, A.: Evidence for a three-factor theory of emotions. Journal of Research in Personality 11, 273-294 (1977)
  15. Morris, J. D.: Observations: SAM: The self-assessment manikin - an efficient cross-cultural measurement of emotional response. Journal of Advertising Research 35, 63-68 (1995)
  16. Beckmann, C.F., Smith, S.M.: Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging 23, 137-152 (2004)
  17. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E., JohansenBerg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23 Suppl 1, S208-S219 (2004)
  18. Jenkinson, M., Bannister, P.R., Brady, J.M., Smith, S.M.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17, 825-841 (2002)
  19. Smith, S.M.: Fast robust automated brain extraction. Human Brain Mapping 17, 143-155 (2002)
  20. Jenkinson, M., Smith, S.M.: A global optimisation method for robust affine registration of brain images. Medical Image Analysis 5, 143-156 (2001)
  21. Walczak, S., Cerpa, N.: Heuristic principles for the design of artificial neural networks. Information and Software Technology 41, 107-117 (1999)
  22. Limas, M. C., Meré, J. B. O., Marcos, A. G., Ascacibar, F. J. M. d.P., Espinoza, A. V. P., Elías, F. A.: AMORE: A MORE flexible neural network package. León (2010)
  23. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2010)
Download


Paper Citation


in Harvard Style

Marques dos Santos J., Moutinho L. and Castelo-Branco M. (2014). 'Mind Reading': Hitting Cognition by Using ANNs to Analyze fMRI Data in a Paradigm Exempted from Motor Responses . In Proceedings of the International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2014) ISBN 978-989-758-041-3, pages 45-52. DOI: 10.5220/0005126400450052


in Bibtex Style

@conference{anniip14,
author={José Paulo Marques dos Santos and Luiz Moutinho and Miguel Castelo-Branco},
title={'Mind Reading': Hitting Cognition by Using ANNs to Analyze fMRI Data in a Paradigm Exempted from Motor Responses},
booktitle={Proceedings of the International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2014)},
year={2014},
pages={45-52},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005126400450052},
isbn={978-989-758-041-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Workshop on Artificial Neural Networks and Intelligent Information Processing - Volume 1: ANNIIP, (ICINCO 2014)
TI - 'Mind Reading': Hitting Cognition by Using ANNs to Analyze fMRI Data in a Paradigm Exempted from Motor Responses
SN - 978-989-758-041-3
AU - Marques dos Santos J.
AU - Moutinho L.
AU - Castelo-Branco M.
PY - 2014
SP - 45
EP - 52
DO - 10.5220/0005126400450052