Neural Control using EEG as a BCI Technique for Low Cost Prosthetic Arms

Shyam Diwakar, Sandeep Bodda, Chaitanya Nutakki, Asha Vijayan, Krishnashree Achuthan, Bipin Nair

2014

Abstract

There have been significant advancements in brain computer interface (BCI) techniques using EEG-like methods. EEG can serve as non-invasive BMI technique, to control devices like wheelchairs, cursors and robotic arm. In this paper, we discuss the use of EEG recordings to control low-cost robotic arms by extracting motor task patterns and indicate where such control algorithms may show promise towards the humanitarian challenge. Studies have shown robotic arm movement solutions using kinematics and machine learning methods. With iterative processes for trajectory making, EEG signals have been known to be used to control robotic arms. The paper also showcases a case-study developed towards this challenge in order to test such algorithmic approaches. Non-traditional approaches using neuro-inspired processing techniques without implicit kinematics have also shown potential applications. Use of EEG to resolve temporal information may, indeed, help understand movement coordination in robotic arm.

References

  1. AbuQassem, M.R., 2010. Simulation and Interfacing of 5 DOF Educational Robot Arm. Islamic University of Gaza.
  2. Albus, J.S., 1975. A New Approach to Manipulator Control: The Cerebellar Model Articulation Controller(CMAC). J. Dyn. Syst. Meas. Control.
  3. Anderson, C., 1995. EEG signal classification with different signal representations. In: Neural Networks for Signal Processing. IEEE, Cambridge, MA, pp. 475-483.
  4. Bi, L., Fan, X.-A., Liu, Y., 2013. EEG-Based BrainControlled Mobile Robots: A Survey. IEEE Trans. Human-Machine Syst. 43, 161-176.
  5. Birbaumer, N., 2006. Breaking the silence: brain-computer interfaces (BCI) for communication and motor control. Psychophysiology 43, 517-32.
  6. Birbaumer, N., Hinterberger, T., Kübler, A., Neumann, N., 2003. The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 120-3.
  7. Choi, K., 2012. Control of a vehicle with EEG signals in real-time and system evaluation. Eur. J. Appl. Physiol. 112, 755-66.
  8. Craig, D.A., Nguyen, H.T., 2007. Adaptive EEG thought pattern classifier for advanced wheelchair control. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 2544-7.
  9. D'Apuzzo, M., Liccardo, A., Bifulco, P., Polisiero, M., 2012. Metrological issues concerning low cost EMGcontrolled prosthetic hand. In: 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings. IEEE, pp. 1481- 1486.
  10. Dasgupta, S., Fanton, M., Pham, J., Willard, M., Nezamfar, H., Shafai, B., Erdogmus, D., 2010. Brain controlled robotic platform using steady state visual evoked potentials acquired by EEG. In: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers. IEEE, pp. 1371-1374.
  11. Donchin, E., Spencer, K.M., Wijesinghe, R., 2000. The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans. Rehabil. Eng. 8, 174-179.
  12. Farwell, L. a, Donchin, E., 1988. Talking off the top of your head: toward a mental prosthesis utilizing eventrelated brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510-23.
  13. Friman, O., Volosyak, I., Gräser, A., 2007. Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces. IEEE Trans. Biomed. Eng. 54, 742-50.
  14. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A., 2014. The SpiNNaker Project. Proc. IEEE 102, 652-665.
  15. Gysels, E., Renevey, P., Celka, P., 2005. SVM-based recursive feature elimination to compare phase synchronization computed from broadband and narrowband EEG signals in Brain-Computer Interfaces. Signal Processing 85, 2178-2189.
  16. Hosni, S.M., Gadallah, M.E., Bahgat, S.F., AbdelWahab, M.S., 2007. Classification of EEG signals using different feature extraction techniques for mental-task BCI. 2007 Int. Conf. Comput. Eng. Syst. 220-226.
  17. Iqbal, J., Islam, R., Khan, H., 2012. Modeling and Analysis of a 6 DOF Robotic Arm Manipulator. Can. J. Electr. Electron. Eng.
  18. Joshi, P., Maass, W., 2005. Movement generation with circuits of spiking neurons. Neural Comput. 17, 1715- 1738.
  19. Kalanovic, V.D., Popoviic, D., Skaug, N.T., 2000. Feedback Error Learning Neural Network for Transfemoral Prosthesis. IEEE Trans. Rehabil. Eng. 8, 71- 80.
  20. Kasabov, N., Dhoble, K., Nuntalid, N., Indiveri, G., 2013. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Netw. 41, 188-201.
  21. Kay, J., 2005. Introduction to Homogeneous Transformations & Robot Kinematics.
  22. Kucuk, S., Bingul, Z., 2006. Robot Kinematics: Forward and Inverse Kinematics. In: Industrial-RoboticsTheory-Modelling-Control. pp. 117-148.
  23. Lachaux, J.P., Rodriguez, E., Martinerie, J., Varela, F.J., 1999. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194-208.
  24. Leeb, R., Friedman, D., Müller-Putz, G.R., Scherer, R., Slater, M., Pfurtscheller, G., 2007. Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: a case study with a tetraplegic. Comput. Intell. Neurosci. 79642.
  25. Leuthardt, E.C., Schalk, G., Wolpaw, J.R., Ojemann, J.G., Moran, D.W., 2004. A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 1, 63-71.
  26. McFarland, D.J., Miner, L. a, Vaughan, T.M., Wolpaw, J.R., 2000. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 12, 177-86.
  27. Md Norani, N.A., Mansor, W., Khuan, L.Y., 2010. A review of signal processing in brain computer interface system. In: 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE, pp. 443-449.
  28. Megahed, S.M., 2013. Mechanical Design & Production Department.
  29. Middendorf, M., McMillan, G., Calhoun, G., Jones, K.S., 2000. Brain-computer interfaces based on the steadystate visual-evoked response. IEEE Trans. Rehabil. Eng. 8, 211-4.
  30. Millán, J., Franzé, M., Mouriño, J., Cincotti, F., Babiloni, F., 2002. Relevant EEG features for the classification of spontaneous motor-related tasks. Biol. Cybern. 86, 89-95.
  31. Mitra, A.K., 2012. Joint Motion-based Homogeneous Matrix Method for Forward Kinematic Analysis of Serial Mechanisms. Int. J. Emerg. Technol. Adv. Eng. 2, 111-122.
  32. Mitrovic, D., Nagashima, S., Klanke, S., Matsubara, T., Vijayakumar, S., 2010. Optimal Feedback Control for Anthropomorphic Manipulators. In: Int. Conf. Robot. Autom. 2010). Alaska, USA.
  33. Muller, K.-R., Blankertz, B., 2006. Toward noninvasive brain-computer interfaces. IEEE Signal Process. Mag. 23, 128-126.
  34. Muller-Cajar, R., Mukundan, R., 2007. Triangulation?: A new algorithm for Inverse Kinematics. In: Proceedings of Image and Vision Computing New Zealand. pp. 181-186.
  35. Nicolas-Alonso, L.F., Gomez-Gil, J., 2012. Brain computer interfaces, a review. Sensors (Basel). 12, 1211-79.
  36. Owen, A.M., Coleman, M.R., 2008. Using neuroimaging to detect awareness in disorders of consciousness. Funct. Neurol. 23, 189-94.
  37. Pfurtscheller, G., Allison, B.Z., Brunner, C., Bauernfeind, G., Solis-Escalante, T., Scherer, R., Zander, T.O., Mueller-Putz, G., Neuper, C., Birbaumer, N., 2010. The hybrid BCI. Front. Neurosci. 4, 30.
  38. Pfurtscheller, G., Brunner, C., Schlögl, A., Lopes da Silva, F.H., 2006. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. Neuroimage 31, 153-9.
  39. Pfurtscheller, G., Neuper, C., Müller, G.R., Obermaier, B., Krausz, G., Schlögl, A., Scherer, R., Graimann, B., Keinrath, C., Skliris, D., Wörtz, M., Supp, G., Schrank, C., 2003. Graz-BCI: state of the art and clinical applications. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 177-80.
  40. Pires, G., Castelo-Branco, M., Nunes, U., 2008. Visual P300-based BCI to steer a wheelchair: a Bayesian approach. In: Conference Proceedings?: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference. pp. 658- 61.
  41. Rawlik, K., Toussaint, M., S, V., 2012. On Stochastic Optimal Control and Reinforcement Learning by Approximate Inference. In: Robotics: Science and Systems Conference.
  42. Repovs, G., 2010. Dealing with Noise in EEG Recording and data analysis. Inform. Medica Slov. 15, 18-25.
  43. Saal, H.P., Vijayakumar, S., 2010. Active estimation of object dynamics parameters with tactile sensors. In: 2010 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IEEE, pp. 916-921.
  44. Sahu, S., Biswal, B.B., Subudhi, B., 2008. Computational Intelligence , Control and Automation A Novel Method for Representing Robot Kinematics using Quaternion Theory A Novel Method for Representing Robot Kinematics using Quaternion Theory. IEEE Spons. Conf. Comput. Intell. Control Comput. Vis. Robot. Autom.
  45. Schlögl, A., Slater, M., Pfurtscheller, G., 2002. Presence research and EEG Properties of EEG recordings.
  46. Shepherd, G.M., Mirsky, J.S., Healy, M.D., Singer, M.S., Skoufos, E., Hines, M.S., Nadkarni, P.M., Miller, P.L., 1998. The Human Brain Project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data. Trends Neurosci. 21, 460-468.
  47. Srinivasan, R., 1999. Methods to Improve the Spatial Resolution of EEG. Int. J. Bioelectromagn. 1, 102- 111.
  48. Tanaka, K., Matsunaga, K., Wang, H.O., 2005. Electroencephalogram-Based Control of an Electric Wheelchair. IEEE Trans. Robot. 21, 762-766.
  49. Vespa, P.M., Nenov, V., Nuwer, M.R., 1999. Continuous EEG monitoring in the intensive care unit: early findings and clinical efficacy. J. Clin. Neurophysiol. 16, 1-13.
  50. Vijayan, A., Nutakki, C., Medini, C., Singanamala, H., Nair, B., 2013. Classifying Movement Articulation for Robotic Arms via Machine Learning. J. Intell. Comput.
  51. Westling, G., Johansson, R.S., 1984. Factors influencing the force control during precision grip. Exp. brain Res. 53, 277-84.
  52. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M., 2002. Braincomputer interfaces for communication and control. Clin. Neurophysiol. 113, 767-91.
  53. Wolpert, D.M., Flanagan, J.R., 2010. Q&A: Robotics as a tool to understand the brain. BMC Biol. 8, 92.
  54. Yuanqing Li, Chuanchu Wang, Haihong Zhang, Cuntai Guan, 2008. An EEG-based BCI system for 2D cursor control. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence). IEEE, pp. 2214-2219.
Download


Paper Citation


in Harvard Style

Diwakar S., Bodda S., Nutakki C., Vijayan A., Achuthan K. and Nair B. (2014). Neural Control using EEG as a BCI Technique for Low Cost Prosthetic Arms . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014) ISBN 978-989-758-054-3, pages 270-275. DOI: 10.5220/0005134802700275


in Bibtex Style

@conference{ncta14,
author={Shyam Diwakar and Sandeep Bodda and Chaitanya Nutakki and Asha Vijayan and Krishnashree Achuthan and Bipin Nair},
title={Neural Control using EEG as a BCI Technique for Low Cost Prosthetic Arms},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)},
year={2014},
pages={270-275},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005134802700275},
isbn={978-989-758-054-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)
TI - Neural Control using EEG as a BCI Technique for Low Cost Prosthetic Arms
SN - 978-989-758-054-3
AU - Diwakar S.
AU - Bodda S.
AU - Nutakki C.
AU - Vijayan A.
AU - Achuthan K.
AU - Nair B.
PY - 2014
SP - 270
EP - 275
DO - 10.5220/0005134802700275