A Method for Evaluating Validity of Piecewise-linear Models

Oleg V. Senko, Dmitry S. Dzyba, Ekaterina A. Pigarova, Liudmila Ya. Rozhinskaya, Anna V. Kuznetsova

2014

Abstract

A method for evaluating optimal complexity of regression models is discussed. It is supposed that complicated model must be used only when any simple model fails describe exhaustively regularity that exists in data. At that null hypothesis about exhaustive explanation of data by simple regularity is tested with the help of complicated model. Validity of null hypothesis is evaluated with the help p-value that is calculated with the help of special version of permutation test. An application is discussed where developed technique is used to evaluate if more complicated piecewise-linear regressions must be used instead of simple regressions to describe correctly dependence of parathyroid hormone on vitamin D status.

References

  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, vol.19, iss.6,:pp. 716-723.
  2. Domingos, P. (1999). The role of occam's razor in knowledge discovery. Data Mining and Knowledge Discovery, vol. 3, iss. 4:pp. 409-425.
  3. Ernst, M. (2004). Permutation methods: A basis for exact inference. Statistical Science, 19(4):676-685.
  4. Golland, P. et al. (2000). Permutation test for classification. Journal of Machine Learning Research, 1.
  5. Good, P. (2005). Permutation, Parametric and Bootstrap Tests of Hypotheses. Springer Science+Business Media, Inc.
  6. Hannan, E. and Quinn, B. (1979). The determination of the order of an autoregression. Journal of the Royal Statistical Society, Series B (Methodological), vol.41:pp. 190-195.
  7. Kim, G. et al. (2012). Relationship between vitamin d, parathyroid hormone, and bone mineral density in elderly koreans. J Korean Med Sci.
  8. Kim, H.-J. et al. (2000). Permutation tests for joinpoint regression with applications to cancer rates. Statist. Medicine, vol.19.
  9. Kuznetsova, A. et al. (2013). Modification of the method of optimal valid partitioning for comparison of patterns related to the occurrence of ischemic stroke in two groups of patients. Pattern Recognition and Image Analysis, 22(4):10-25.
  10. Ojala, M. and Garriga, G. (2010). Permutation tests for studying classifier performance. Journal of Machine Learning Research.
  11. Rissanen, J. (1978). Modeling by shortest data description. Automatica, vol. 14, iss. 5:pp. 465-658.
  12. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, vol. 6:pp. 461-464.
  13. Senko, O. and Kuznetsova, A. (2006). The optimal valid partitioning procedures. InterStat, Statistics in Internet,http://ip.statjournals.net.
Download


Paper Citation


in Harvard Style

V. Senko O., S. Dzyba D., A. Pigarova E., Ya. Rozhinskaya L. and V. Kuznetsova A. (2014). A Method for Evaluating Validity of Piecewise-linear Models . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2014) ISBN 978-989-758-048-2, pages 437-443. DOI: 10.5220/0005156904370443


in Bibtex Style

@conference{kdir14,
author={Oleg V. Senko and Dmitry S. Dzyba and Ekaterina A. Pigarova and Liudmila Ya. Rozhinskaya and Anna V. Kuznetsova},
title={A Method for Evaluating Validity of Piecewise-linear Models},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2014)},
year={2014},
pages={437-443},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005156904370443},
isbn={978-989-758-048-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2014)
TI - A Method for Evaluating Validity of Piecewise-linear Models
SN - 978-989-758-048-2
AU - V. Senko O.
AU - S. Dzyba D.
AU - A. Pigarova E.
AU - Ya. Rozhinskaya L.
AU - V. Kuznetsova A.
PY - 2014
SP - 437
EP - 443
DO - 10.5220/0005156904370443