A Vision Architecture
Christoph von der Malsburg
2014
Abstract
We are offering a particular interpretation (well within the range of experimentally and theoretically accepted notions) of neural connectivity and dynamics and discuss it as the data-and-process architecture of the visual system. In this interpretation the permanent connectivity of cortex is an overlay of well-structured networks, “nets”, which are formed on the slow time-scale of learning by self-interaction of the network under the influence of sensory input, and which are selectively activated on the fast perceptual time-scale. Nets serve as an explicit, hierarchical representation of visual structure in the various sub-modalities, as constraint networks favouring mutually consistent sets of latent variables and as projection mappings to deal with invariance.
References
- Allman, J., Mieyin, F. and McGuinness, E., 1985. Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Annu Rev Neurosci 8:407-30
- Anderson, C. H. and Van Essen, D. C., 1987). Shifter circuits: a computational strategy for dynamic aspects of visual processing. PNAS 84, 6297-6301.
- D.W. Arathorn D.W., 2002. Map-Seeking circuits in Visual Cognition -- A Computational Mechanism for Biological and Machine Vision. Standford Univ. Press, Stanford, California.
- Barlow, H.B., 1972. Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology. Perception 1, 371-394.
- Biederman, I., 1987. Recognition-by-components: a theory of human image understanding. Psychol Rev. 94 115-147.
- Fukushima, K., 1980. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by a Shift in Position.
- Kree, R. and Zippelius, A., 1988. Recognition of Topological Features of Graphs and Images in Neural Networks. J. Phys. A 21, 813-818.
- Lades, M., Vorbrüggen, J.C., Buhmann, J.. Lange, J., von der Malsburg, C., Würtz, R.P. Würtz and Konen, W., 1993. Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers, 42:300-311.
- Olshausen, B.A. and Field, D.J., 1996. Emergence of simple-cell receptive fields properties by learning a sparse code for natural images. Nature 381, 607-609.
- Polsky, A. and Mel, B.W. And Schiller, J., 2004. Computational subunits in thin dendrites of pyramidal cells. Nature Neuroscience 7, 621-627.
- Shen-Orr, S.S., Milo, R., Mangan, S. and Alon, U., 2002. Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics 31, 64- 68.
- P. Wolfrum, C. Wolff, J. Lücke, and C. von der Malsburg. A recurrent dynamic model for correspondence-based face recognition. Journal of Vision 8, 1--18. doi:10.1167/8.7.34, 2008.
Paper Citation
in Harvard Style
von der Malsburg C. (2014). A Vision Architecture . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014) ISBN 978-989-758-054-3, pages 345-350. DOI: 10.5220/0005158103450350
in Bibtex Style
@conference{ncta14,
author={Christoph von der Malsburg},
title={A Vision Architecture},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)},
year={2014},
pages={345-350},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005158103450350},
isbn={978-989-758-054-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2014)
TI - A Vision Architecture
SN - 978-989-758-054-3
AU - von der Malsburg C.
PY - 2014
SP - 345
EP - 350
DO - 10.5220/0005158103450350