Predicting Wrist Movement Trajectory from Ipsilesional ECoG in Chronic Stroke Patients

Martin Spüler, Wolfgang Rosenstiel, Martin Bogdan

2014

Abstract

Recently, there have been several approaches to utilize a Brain-Computer Interface (BCI) for chronic stroke patients. The prediction of movement trajectory based on recorded brain activity could thereby help to improve BCI-guided stroke rehabilitation or could be used for control of an assistive device, like an orthosis or a robotic arm. One problem in predicting movement trajectory in stroke patients are compensatory movements, which make it difficult to link specific brain activity to movement intention. In this paper we compare different methods for trajectory prediction and show how Canonical Correlation Analysis (CCA) can be used to predict movement trajectories. Based on the results, we argue that the resulting trajectory prediction is closer to the actual movement intention. We further show how the transformation matrices obtained by CCA can be interpreted and discuss how this interpretation might be useful to get information regarding compensatory movements in stroke and the underlying patterns of brain activity.

References

  1. Bin, G., Gao, X., Yan, Z., Hong, B., and Gao, S. (2009). An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method. Journal of Neural Engineering, 6(4):046002.
  2. Bishop, C. M. et al. (2006). Pattern recognition and machine learning, volume 1. springer New York.
  3. Broetz, D., Braun, C., Weber, C., Soekadar, S., Caria, A., and Birbaumer, N. (2010). Combination of braincomputer interface training and goal-directed physical therapy in chronic stroke: a case report. Neurorehabilitation and Neural Repair, 24(7):674-679.
  4. Buch, E., Weber, C., Cohen, L., Braun, C., Dimyan, M., Ard, T., Mellinger, J., Caria, A., Soekadar, S., Fourkas, A., and Birbaumer, N. (2008). Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke, 39:910-7.
  5. Burg, J. P. (1967). Maximum entropy spectral analysis. In 37th Annual International Meeting. Society of Exploration Geophysics.
  6. Chang, C.-C. and Lin, C.-J. (2011). Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27.
  7. Cirstea, M. and Levin, M. F. (2000). Compensatory strategies for reaching in stroke. Brain, 123(5):940-953.
  8. Cramer, S., Nelles, G., Benson, R., Kaplan, J., Parker, R., Kwong, K., Kennedy, D., Finklestein, S., and Rosen, B. (1997). A functional MRI study of subjects recovered from hemiparetic stroke. Stroke, 28(12):2518- 2527.
  9. Dunteman, G. H. (1989). Principal components analysis. Number 69. Sage.
  10. Fugl-Meyer, A., Jääskö, L., Leyman, I., Olsson, S., and Steglind, S. (1975). The post-stroke hemiplegic patient. a method for evaluation of physical performance. Scandinavian journal of rehabilitation medicine, 7(1):13-31.
  11. Hastie, T., Buja, A., and Tibshirani, R. (1995). Penalized discriminant analysis. The Annals of Statistics, pages 73-102.
  12. Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3/4):321-377.
  13. Kwakkel, G., Kollen, B. J., van der Ground, J., and Prevo, A. J. (2003). Probability of regaining dexterity in the flaccid upper limb impact of severity of paresis and time since onset in acute stroke. Stroke, 34:2181- 2186.
  14. Lee, M. Y., Park, J. W., Park, R. J., Hong, J. H., Son, S. M., Ahn, S. H., Cho, Y. W., and Jang, S. H. (2009). Cortical activation pattern of compensatory movement in stroke patients. NeuroRehabilitation, 25(4):255-260.
  15. Nakanishi, Y., Yanagisawa, T., Shin, D., Fukuma, R., Chen, C., Kambara, H., Yoshimura, N., Hirata, M., Yoshimine, T., and Koike, Y. (2013). Prediction of three-dimensional arm trajectories based on ecog signals recorded from human sensorimotor cortex. PloS one, 8(8):e72085.
  16. Pistohl, T., Ball, T., Schulze-Bonhage, A., Aertsen, A., and Mehring, C. (2008). Prediction of arm movement trajectories from ecog-recordings in humans. Journal of neuroscience methods, 167(1):105-114.
  17. Ramos-Murguialday, A., Broetz, D., Rea, M., Läer, L., Yilmaz, O ., Brasil, F. L., Liberati, G., Curado, M. R., Garcia-Cossio, E., Vyziotis, A., et al. (2013). Brainmachine interface in chronic stroke rehabilitation: A controlled study. Annals of neurology, 74(1):100-108.
  18. Schalk, G., Miller, K., Anderson, N., Wilson, J., Smyth, M., Ojemann, J., Moran, D., Wolpaw, J., and Leuthardt, E. (2008). Two-dimensional movement control using electrocorticographic signals in humans. J Neural Eng, 5(1):75-84.
  19. Sheikh, H., McFarland, D. J., Sarnacki, W. A., and Wolpaw, J. R. (2003). Electroencephalographic (eeg)-based communication: Eeg control versus system performance in humans. Neuroscience letters, 345(2):89- 92.
  20. Silvoni, S., Ramos-Murguialday, A., Cavinato, M., Volpato, C., Cisotto, G., Turolla, A., Piccione, F., and Birbaumer, N. (2011). Brain-computer interface in stroke: a review of progress. Clinical EEG and Neuroscience, 42(4):245-252.
  21. Spüler, M., Rosenstiel, W., and Bogdan, M. (2011). A fast feature selection method for high-dimensional MEG BCI data. In Proceedings of the 5th Int. BrainComputer Interface Conference, pages 24-27, Graz.
  22. Spüler, M., Rosenstiel, W., and Bogdan, M. (2012). Online adaptation of a c-VEP Brain-Computer Interface (BCI) based on Error-related potentials and unsupervised learning. PloS one, 7(12):e51077.
  23. Spüler, M., Walter, A., Ramos Murguialday, A., Naros, G., Birbaumer, N., Gharabaghi, A., Rosenstiel, W., and Bogdan, M. (2014). Decoding of motor intentions from epidural ECoG recordings in severely paralyzed chronic stroke patients. Journal of Neural Engineering. accepted.
  24. Spüler, M., Walter, A., Rosenstiel, W., and Bogdan, M. (2013). Spatial Filtering Based on Canonical Correlation Analysis for Classification of Evoked or EventRelated Potentials in EEG Data. IEEE Transactions on Neural Systems and Rehabilitation Engineering.
  25. Sun, L., Ji, S., and Ye, J. (2008). A least squares formulation for canonical correlation analysis. In Proceedings of the 25th international conference on Machine learning, pages 1024-1031. ACM.
  26. Walter, A., Murguialday, A. R., Spüler, M., Naros, G., Lea˜o, M. T., Gharabaghi, A., Rosenstiel, W., Birbaumer, N., and Bogdan, M. (2012). Coupling BCI and cortical stimulation for brain-state-dependent stimulation: methods for spectral estimation in the presence of stimulation after-effects. Frontiers in neural circuits, 6.
  27. Yanagisawa, T., Hirata, M., Saitoh, Y., Goto, T., Kishima, H., Fukuma, R., Yokoi, H., Kamitani, Y., and Yoshimine, T. (2011). Real-time control of a prosthetic hand using human electrocorticography signals: technical note. Journal of neurosurgery, 114(6):1715- 1722.
Download


Paper Citation


in Harvard Style

Spüler M., Rosenstiel W. and Bogdan M. (2014). Predicting Wrist Movement Trajectory from Ipsilesional ECoG in Chronic Stroke Patients . In Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NEUROTECHNIX, ISBN 978-989-758-056-7, pages 38-45. DOI: 10.5220/0005165200380045


in Bibtex Style

@conference{neurotechnix14,
author={Martin Spüler and Wolfgang Rosenstiel and Martin Bogdan},
title={Predicting Wrist Movement Trajectory from Ipsilesional ECoG in Chronic Stroke Patients},
booktitle={Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NEUROTECHNIX,},
year={2014},
pages={38-45},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005165200380045},
isbn={978-989-758-056-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Congress on Neurotechnology, Electronics and Informatics - Volume 1: NEUROTECHNIX,
TI - Predicting Wrist Movement Trajectory from Ipsilesional ECoG in Chronic Stroke Patients
SN - 978-989-758-056-7
AU - Spüler M.
AU - Rosenstiel W.
AU - Bogdan M.
PY - 2014
SP - 38
EP - 45
DO - 10.5220/0005165200380045