Choice of the Definition Method for the Total Electron Content to Describe the Conditions in the Ionosphere

Maltseva Olga

2014

Abstract

Conditions of radio-wave propagation in the ionosphere, influencing functioning of the modern navigation and communication systems, are defined by the critical frequency foF2 and an electron density distribution termed the N(h)- profile. In the given paper, the experimental values of the total electron content TEC(obs) are used for their determination. It is shown that the median of the equivalent slab thickness of the ionosphere is the good calibration factor, allowing to obtain values of foF2 from TEC(obs) of any global map though in most cases values of foF2, the closest to foF2(obs), are provided with the JPL map. For coordination of the N(h)-profile with values of TEC(obs), coefficient K(PL), modifying a plasmaspheric part of a profile, is entered (up to heights of navigation and geostationary satellites). In this case, the CODE map is the best one. It is necessary to have models of the ТЕС parameter to support navigation system operation. It is shown that the big progress in modeling of this parameter is reached during the last years: appearance of various models allows us to compare and use them at forecast ТЕС for any level of solar activity. It is especially important, because values of solar spots and the F10.7 parameter and also geomagnetic indexes of Kp, Dst, АЕ are well enough predicted.

References

  1. Arikan, F., Erol C.B., Arikan O., Regularized estimation of vertical total electron content from Global Positioning System data. 2003. J. Geophys. Res., 108, A12, 1469, doi:10.1029/2002JA009605, 12p.
  2. Chen, K., Gao Y. Real-time precise point positioning using single frequency data. Proceedings of IONGNSS 18th International Technical Meeting of the Satellite Division, Long Beach, CA, 2005, 1514-1523.
  3. Goodman, J.M., 2005. Operational communication systems and relationships to the ionosphere and space weather. Adv. Space Res., 36, 2241-2252.
  4. Gulyaeva, T.L., 2011. Storm time behavior of topside scale height inferred from the ionosphereplasmosphere model driven by the F2 layer peak and GPS-TEC observations. Adv. Space Res., 47, 913-920.
  5. Gulyaeva, T.L., Arikan F., Hernandez-Pajares M., Stanislawska I. 2013. GIM-TEC adaptive ionospheric weather assessment and forecast system. J. Atm. Solar-Terr. Phys., 102, 329-340.
  6. Gulyaeva, T.L., Bilitza D., 2011. Towards ISO standard Earth ionosphere and plasmasphere model. In: Larsen, R.J. (Ed.), New developments in the standard model. NOVA Publishers, USA, 11-64.
  7. Gulyaeva, T.L., Stanislawska, I., 2008. Derivation of a planetary ionospheric storm index. Ann. Geophys., 26, 2645-2648.
  8. Hajj, G.A., Romans L.J., 1998. Ionospheric electron density profiles obtained with the Global Positioning System: results from the GPS/MET experiment. Radio Sci., 33, 175-190.
  9. Hernandez-Pajares, M., Juan, J. M., Orus, R., Garcia-Rigo, A., Feltens, J., Komjathy, A., Schaer, S. C., and Krankowski, A.: The IGS VTEC maps: a reliable source of ionospheric information since 1998. J. Geod., 2009, 83, 263-275.
  10. Hernandez-Pajares, M., Juan, J.M., Sanz, J., 1997. Highresolution TEC monitoring method using permanent ground GPS receivers, Geophys. Res. Lett., 24, 1643- 1646.
  11. Hoque, M.M., Jakowski N., 2011. A new global empirical NmF2 model for operational use in radio systems. Radio Sci., 46, RS6015, 1-13.
  12. Hoque, M.M., Jakowski N., 2012. A new global model for the ionospheric F2 peak height for radio wave propagation. Ann. Geophys., 30, 797-809.
  13. Houminer, Z., Soicher H., 1996. Improved short -term predictions of foF2 using GPS time delay measurements. Radio Sci., 31(5), 1099-1108.
  14. Ivanov, V.B., Gefan G.D., Gorbachev O.A., 2011. Global empirical modeling of the total electron content of the ionosphere for satellite radio navigation systems. J. Atm. Solar-Terr. Phys., 73, 1703-1708.
  15. Jakowski, N., Hoque M.M., Mayer C. A new global TEC model for estimating transionospheric radio wave propagation errors, Journal of Geodesy, 2011, 85(12), 965-974.
  16. Jakowski, N., Sardon E., Engler E., Jungstand A., Klahn D., 1996. Relationships between GPS-signal propagation errors and EISCAT observations. Ann. Geophys., 14, 1429-1436.
  17. Jakowski, N., Stankov S.M., Schlueter S., Klaehn D., 2006. On developing a new ionospheric perturbation index for space weather operations. Adv. Space Res., 38, 2596-2600.
  18. Kakinami, Y., Chen C.H., Liu J.Y., Oyama K.-I., Yang W.H., Abe S., 2009. Empirical models of total electron content based on functional fitting over Taiwan during geomagnetic quiet condition. Ann. Geophys., 27, 3321-3333.
  19. Klobuchar, J.A., 1987. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Transactions on aerospace and electronic systems. 1987AES-23(3), 325-331.
  20. Lastovicka, J. Are trends in total electron content (TEC) really positive? J. Geophys. Res.: Space Physics, 2013, 118, 3831-3835, doi:10.1002/jgra.50261.
  21. Lean, J., Emmert J.T., Picone J.M., Meier R. R. Global and regional trends in ionospheric electron content. J. Geophys. Res., 2011, 116, A00H04, doi:10.1029 /2010JA016378.
  22. Maltseva, ?.A., Mozhaeva N.S, Zhbankov G.A., 2012a. A new model of the International Reference Ionosphere IRI for telecommunication and navigation systems. Proceedings of the First International Conference on Telecommunications and Remote Sensing, Sofia, Bulgaria 29-30 August 2012, 129-138, http://www.math.bas.bg/ursi/ICTRS2012 proceedings.pdf
  23. Maltseva, ?.A., Mozhaeva N.S, Poltavsky O.S., Zhbankov G.A., 2012b. Use of TEC global maps and the IRI model to study ionospheric response to geomagnetic disturbances. Adv. Space Res., 49, 1076-1087.
  24. Maltseva, O. A., Zhbankov G. A., Mozhaeva N.S., 2013a. Advantages of the new model of IRI (IRI-Plas) to study ionospheric environment. Adv. Radio Sci., 11, 907-911, doi:10.5194/ars-11-1-2013.
  25. Maltseva, ?.A., Mozhaeva N.S, T.V. Nikitenko, 2013b. Validation of the Neustrelitz Global Model according to the low latitude ionosphere. Adv. Space Res., http://dx.doi.org/10.1016/j.asr.2013.11.005.
  26. Maltseva, O., Mozhaeva N., Vinnik E., 2013c. Validation of two new empirical ionospheric models IRI-Plas and NGM describing conditions of radio wave propagation in space. Proceedings of Second International Conference on Telecommunications and Remote Sensing, Noordwijkerhout, The Netherlands, 11-12 July, 109-118.
  27. Mukhtarov, P., Pancheva D., Andonov B., Pashova L., 2013a. Global TEC maps based on GNSS data: 1. Empirical background TEC model. J. Geophys. Res.: Space Physics, 118, 4594-4608, doi:10.1002/ jgra.50413.
  28. Mukhtarov, P., Pancheva D., Andonov B., Pashova L., 2013b. Global TEC maps based on GNNS data: 2. Model evaluation. J. Geophys. Res.: Space Physics, 118, 4609-4617, doi:10.1002/jgra.50412.
  29. Mannucci, A. J., Wilson B. D., Yuan D. N., Ho C. H., Lindqwister U.J., Runge T.F., 1998. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Science, 33(3), 565-582.
  30. Mukhtarov, P., Pancheva D., Andonov B., Pashova L., 2013. Global TEC maps based on GNSS data: 1. Empirical background TEC model. J. Geophys. Res.: Space Physics, 118, 4594-4608, doi:10.1002/ jgra.50413.
  31. Pesnell, W.D. Solar Cycle Predictions (Invited Review), Solar Phys, 2012, 1-26, DOI 10.1007/s11207-012- 9997-5.
  32. Sardon, E., Rius A., Zarraoa N., 1994. Estimation of the receiver differential biases and the ionospheric total electron content from Global Positioning System observations. Radio Sci., 29, 577-586.
  33. Schaer, S., Beutler G., Mervart L., Rothacher M., Wild U., 1995. Global and regional ionosphere models using the GPS double difference phase observable. IGS Workshop, Potsdam, Germany, May 1995, 1-16.
  34. Tobiska, W. K., D. Knipp, W. J. Burke, D. Bouwer, J. Bailey, D. Odstrcil, M. P. Hagan, J. Gannon, and B. R. Bowman, 2013. The Anemomilos prediction methodology for Dst. SpaceWeather, 11, 490-508, doi:10.1002/swe.20094.
  35. Tsai, Lung-Chih, Tsai Wei-Hsiung, 2004. Improvement of GPS/MET Ionospheric Profiling and Validation Using the Chung-Li Ionosonde Measurements and the IRI model. Terr. Atmos. Ocean. Sci., 15(4), 589-607.
  36. Wu, Chin-Chun, Fryb C.D., Liuc J.-Y., Lioud K., Tseng C.-L., 2004. Annual TEC variation in the equatorial anomaly region during the solar minimum: September 1996-August 1997. J. Atm. Solar-Terr. Phys., 66, 199-207.
Download


Paper Citation


in Harvard Style

Olga M. (2014). Choice of the Definition Method for the Total Electron Content to Describe the Conditions in the Ionosphere . In Proceedings of the Third International Conference on Telecommunications and Remote Sensing - Volume 1: ICTRS, ISBN 978-989-758-033-8, pages 51-61. DOI: 10.5220/0005421200510061


in Bibtex Style

@conference{ictrs14,
author={Maltseva Olga},
title={Choice of the Definition Method for the Total Electron Content to Describe the Conditions in the Ionosphere},
booktitle={Proceedings of the Third International Conference on Telecommunications and Remote Sensing - Volume 1: ICTRS,},
year={2014},
pages={51-61},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005421200510061},
isbn={978-989-758-033-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Third International Conference on Telecommunications and Remote Sensing - Volume 1: ICTRS,
TI - Choice of the Definition Method for the Total Electron Content to Describe the Conditions in the Ionosphere
SN - 978-989-758-033-8
AU - Olga M.
PY - 2014
SP - 51
EP - 61
DO - 10.5220/0005421200510061