Choroid Characterization in EDI OCT Retinal Images Based on Texture Analysis
A. Gonzalez-Lopez, B. Remeseiro, M. Ortega, M. G. Penedo
2015
Abstract
Optical Coherence Tomography (OCT) is a widely extended imaging technique in the opthalmic field for diagnostic purposes. Since layers composing retina can be identified in these images, several image processingbased methods have been presented to segment them automatically in these images, with the aim of developing medical-support applications. Recently, appearance of Enhanced Depth Imaging (EDI) OCT allows to tackle exploration of the choroid which provides high information of eye processes. Therefore, segmentation of choroid layer has become one of the more relevant problems tackled in this field, but it presents different features that rest of the layers. In this work, a novel texture-based study is proposed in order to show that textural information can be used to characterize this layer. A pattern recognition process is carried out by using different descriptors and a process of classification, considering marks performed by two experts for validation. Results show that characterization using texture features is effective with rates over 90% of success.
References
- Alonso-Caneiro, D., Read, S. A., and Collins, M. J. (2013). Automatic segmentation of choroidal thickness in optical coherence tomography. Biomed. Opt. Express, 4(12):2795-2812.
- Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society. Series B, 36:192-236.
- Bill, A., Sperber, G., and Ujiie, K. (1983). Physiology of the choroidal vascular bed. Int. Ophthalmol., 6(2):101-107.
- Bolón-Canedo, V., Snchez-Maroo, N., and AlonsoBetanzos, A. (2013). A review of feature selection methods on synthetic data. Knowl. Inf. Syst., 34(3):483-519.
- C¸esmeli, E. and Wang, D. L. (2001). Texture segmentation using gaussian-markov random fields and neural oscillator networks. IEEE Transactions on Neural Networks, 12(2):394-404.
- Danesh, H., Kafieh, R., Rabbani, H., and Hajizadeh, F. (2014). Segmentation of choroidal boundary in enhanced depth imaging octs using a multiresolution texture based modeling in graph cuts. Computational and Mathematical Methods in Medicine, 2014(479268).
- Dash, M. and Liu, H. (2003). Consistency-based search in feature selection. Artificial Intelligence, 151(1-2):155-176.
- Daubechies, I. (1992). Ten lectures on wavelets. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
- Dhoot, D., Huo, S., Yuan, A., Xu, D., Srivistava, S., Ehlers, J., Traboulsi, E., and PK., K. (2013). Evaluation of choroidal thickness in retinitis pigmentosa using enhanced depth imaging optical coherence tomography. British Journal of Ophthalmology, 97(1):66-9.
- González, A., Ortega, M., Penedo, M., and Charlón, P. (2014). Automatic robust segmentation of retinal layers in oct images with refinement stages. In International Conference on Image Analysis and Recognition (ICIAR), volume 8815 of Lecture Notes in Computer Science, pages 337-349. Springer Berlin Heidelberg.
- Hall, M. (1999). Correlation-based Feature Subset Selection for Machine Learning, PhD dissertation. PhD thesis, University of Waikato.
- Haralick, R., Shanmugam, K., and Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man, and Cybernetics, 3(6):610-621.
- Hu, Z., Wu, X., Ouyang, Y., Ouyang, Y., and Sadda, S. (2013). Semiautomated segmentation of the choroid in spectral-domain optical coherence tomography volume scans. Investigative Ophthalmology & Visual Science, 54(3):1722-9.
- Imamura, Y., Fujiwara, T., Margolis, R., and Spaide, R. (2009). Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina, 29(10):1469- 73.
- Kajic, V., Esmaeelpour, M., Glittenberg, C., Kraus, M. F., Honegger, J., Othara, R., Binder, S., Fujimoto, J. G., and Drexler, W. (2013). Automated three-dimensional choroidal vessel segmentation of 3d 1060 nm oct retinal data. Biomed. Opt. Express, 4(1):134-150.
- Lu, H., Boonarpha, N., Kwong, M., and Zheng, Y. (2013). Automated segmentation of the choroid in retinal optical coherence tomography images. In IEEE Eng Med Biol Soc, pages 5869-72.
- Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11(7):674-693.
- Puzyeyeva, O., Lam, W. C., and Flanagan, J. e. a. (2011). High-resolution optical coherence tomography retinal imaging: A case series illustrating potential and limitations. J. Ophthalmology, pages 764183-6.
- Yin, Z. Q., Vaegan, T. J., Millar, T. J., Beaumont, P., and Sarks, S. (1997). Widespread choroidal insufficiency in primary open-angle glaucoma. Journal of Glaucoma, 6(1):23-32.
- Zhang, L., Lee, K., Niemeijer, M., Mullins, R., Sonka, M., and Abrmoff, M. (2012). Automated segmentation of the choroid from clinical sd-oct. Investigative Ophthalmology & Visual Science, 53(12):7510-9.
- Zhao, Z. and Liu, H. (2009). Searching for interacting features in subset selection. Intell. Data Anal., 13(2):207-228.
Paper Citation
in Harvard Style
Gonzalez-Lopez A., Remeseiro B., Ortega M. and Penedo M. (2015). Choroid Characterization in EDI OCT Retinal Images Based on Texture Analysis . In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-074-1, pages 269-276. DOI: 10.5220/0005177602690276
in Bibtex Style
@conference{icaart15,
author={A. Gonzalez-Lopez and B. Remeseiro and M. Ortega and M. G. Penedo},
title={Choroid Characterization in EDI OCT Retinal Images Based on Texture Analysis},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2015},
pages={269-276},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005177602690276},
isbn={978-989-758-074-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Choroid Characterization in EDI OCT Retinal Images Based on Texture Analysis
SN - 978-989-758-074-1
AU - Gonzalez-Lopez A.
AU - Remeseiro B.
AU - Ortega M.
AU - Penedo M.
PY - 2015
SP - 269
EP - 276
DO - 10.5220/0005177602690276