A Block-based Approach for Malignancy Detection within the Prostate Peripheral Zone in T2-weighted MRI
Andrik Rampun, Paul Malcolm, Reyer Zwiggelaar
2015
Abstract
In this paper, a computer-aided diagnosis method is proposed for the detection of prostate cancer within the peripheral zone. Firstly, the peripheral zone is modelled according to the generic 2D mathematical model from the literature. In the training phase, we captured 334 samples of malignant blocks from cancerous regions which were already defined by an expert radiologist. Subsequently, for every unknown block within the peripheral zone in the testing phase we compare its global, local and attribute similarities with training samples captured previously. Next we compare the similarity between subregions and find which of the subregion has the highest possibility of being malignant. An unknown block is considered to be malignant if it is similar in comparison to one of the malignant blocks, its location is within the subregion which has the highest possibility of being malignant and there is a significant difference in lower grey level distributions within the subregions. The initial evaluation of the proposed method is based on 260 MR images from 40 patients and we achieved 90% accuracy and sensitivity and 89% specificity with 5% and 6% false positives and false negatives, respectively.
References
- Ali, M. A., Dooley, L. S., and Karmakar, G. C. (2005). Automatic feature set selection for merging image segmentation results using fuzzy clustering. In International Conference on Computer and Information Technology.
- Ampeliotis, D., Antonakoudi, A., Berberidis, K., and Psarakis, E. Z. (2007). Computer aided detection of prostate cancer using fused information from dynamic contrast enchanced and morphological magnetic resonance images. In IEEE International Conference on Signal Processing and Communications(ICSPC 2007). IEEE Xplore.
- Artan, Y. and Yetik, I. S. (2012). The digital rectal examination (dre) remains important outcomes from a contemporary cohort of men undergoing an initial 12-18 core prostate needle biopsy. Can J Urol, 16(6):1313 -1323.
- Chen, J. J., Tsai, C., Moon, H., Ahn, H., Young, J. J., , and Chen, C. (2006). The use of decision threshold adjustment in classification for cancer prediction. http://www.ams.sunysb.edu/~hahn/psfile/papthres.pdf. Accessed 19-June-2014.
- Chou, R., Croswell, J. M., Dana, T., Bougatsos, C., Blazina, I., Fu, R., Gleitsmann, K., Koenig, H. C., Lam, C., Maltz, A., Rugge, J. B., and Lin, K. (2010). A review of the evidence for the u.s. preventive services task force. http://www.uspreventiveservicestaskforce. org/uspstf1 2/prostate/prostateart.htm/. Accessed 15- November-2013.
- Dickinson, L., Ahmed, H. U., Allen, C., Barentsz, J. O., Carey, B., Futterer, J. J., Heijmink, S. W., Hoskin, P. J., Kirkham, A., Padhani, A. R., Persad, R., Puech, P., Punwani, S., Sohaib, A. S., Tombal, B., Villersm, A., v. der Meulen, J., and Emberton, M. (2011). Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a european consensus meeting. Eur Urol, 59(4):477-494.
- Edge, S. B., Byrd, D. R., Compton, C., Fritz, A. G., Greene, F. L., and Trotti, A. (2010). AJCC Cancer Staging Manual. Springer, Chicago, 7th edition.
- Elita, N., Gavrila, M., and Cristina, V. (2007). Experiments with string similarity measures in the ebmt framework. In Proceedings of the RANLP 2007 Conference.
- Engelbrecht, M. R., Huisman, H. J., Laheij, R. J., Jager, G. J., van Leenders, G. J., Kaa, C. A. H.-V. D., de la Rosette, J. J., Blickman, J. G., and Barentsz, J. O. (2003). Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced mr imaging. Radiology, 229:248-254.
- Futterer, J. J., Heijmink, S. W. T. P. J., Scheenen, T. W. J., Veltman, J., Huisman, H. J., Vos, P., de Kaa, C. A. H., Witjes, J. A., Krabbe, P. F. M., Heerschap, A., and Barentsz, J. O. (2006). Prostate cancer localization with dynamic contrast-enhanced mr imaging and proton mr spectroscopic imaging. Radiology, 241(2):449-458.
- Garnick, M. B., MacDonald, A., Glass, R., and Leighton, S. (2012). Harvard Medical School 2012: Annual Report on Prostate Diseases. Harvard Medical School.
- Ginat, D. T., Destounis, S. V., Barr, R. G., Castaneda, B., Strang, J. G., and Rubens, D. J. (2009). Us elastography of breast and prostate lesions. Radiographics, 29(7):2007-2016.
- Han, S., Lee, H., and Choi, J. (2008). Computer-aided prostate cancer detection using texture features and clinical features in ultrasound image. J. Digital Imag, 21(1):121-133.
- Hasan, M. M., Ali, M. A., Kabir, M. H., and Sorwar, G. (2009). Object segmentation using block based patterns. In TENCON 2009 -2009 IEEE Region 10 Conference, pages 1-6.
- Hasan, M. M., Sharmeen, S., Rahman, M. A., Ali, M. A., and Kabir, M. H. (2012). Block based image segmentation. Advances in Communication, Network, and Computing, 108:15-24.
- Howlader, N., Noone, A. M., Krapcho, M., Garshell, J., Neyman, N., Altekruse, S., Kosary, C., Yu, M., Ruhl, J., Tatalovich, Z., Cho, A., Mariotto, H., Lewis, D., Chen, H., Feuer, E., and Cronin, K. (2013). Seer cancer statistics review,1975-2010, national cancer institute. http://seer.cancer.gov/csr/1975 2010/. Accessed 16-October-2013.
- Ito, H., Kamoi, K., Yokoyama, K., Yamada, K., and Nishimura, T. (2003). Visualization of prostate cancer using dynamic contrast-enhanced mri: comparison with transrectal power doppler ultrasound. British Journal of Radiology, 76(909):617-624.
- Kim, K. C., Park, B. K., and Kim., B. (2006). Localization of prostate cancer using 3t mri: comparison of t2-weighted and dynamic contrast-enhanced imaging. J Comput Assist Tomogr, 30:7-11.
- Litjens, G. J. S., Vos, P. C., Barentsz, J. O., Karssemeijer, N., and Huisman, H. J. (2011). Automatic computer aided detection of abnormalities in multi-parametric prostate mri. In Proc.SPIE 7963, Medical Imaging 2011: Computer-Aided Diagnosis. SPIE.
- Llobet, R., Juan, C., Cortes, P., Juan, A., and Toselli, A. (2007). Computer-aided detection of prostate cancer. International Journal of Medical Informatics, 76(7):547-556.
- Miao, H., Fukatsu, H., and Ishigaki, T. (2007). Prostate cancer detection with 3-t mri: comparison of diffusionweighted and t2-weighted imaging. Eur J Radiol, 61:297-302.
- Mohamed, S., El-Saadany, E. F., Abdel-Galil, T., Shen, J., Salama, M. M. A., Fenster, A., Downey, D. B., and Rizkalla, K. (2003). Region of interest identification in prostate trus images based on gabor filter. In IEEE 46th Midwest Symposium on Circuits and Systems, volume 1, pages 415-419.
- Niaf, E., Rouviere, O., Mege-Lechevallier, F., Bratan, F., and Lartizien, C. (2012). Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric mri. Phys Med Biol, 57:3833-3851.
- Ocak, I., Bernardo, M., Metzger, G., Barrett, T., Pinto, P., Albert, P. S., and Choyke, P. L. (2007). Dynamic contrast-enhanced mri of prostate cancer at 3 t: a study of pharmacokinetic parameters. American Journal of Roentgenology, 189(4):W192-W201.
- PCUK (2014). Prostate cancer key http://www.cancerresearchuk.org/cancerinfo/spotcancerearly. Accessed 15-April-2014.
- Rampun, A., Malcolm, P., and Zwiggelaar, R. (2013). Detection and localisation of prostate abnormalities. In 3rd Computational and Mathematical Biomedical Engineering (CMBE'13), pages 204-208.
- Rampun, A., Malcolm, P., and Zwiggelaar, R. (2014a). Computer aided diagnosis method for mri-guided prostate biopsy within the peripheral zone using grey level histograms. In 7th International Conference on Machine Vision (ICMV'14).
- Rampun, A., Malcolm, P., and Zwiggelaar, R. (2014b). Detection and localisation of prostate cancer within the peripheral zone using scoring algorithm. In 16th Irish Machine Vision and Image Processing Conference (IMVIP'14).
- Rampun, A., Malcolm, P., and Zwiggelaar, R. (2014c). Detection of prostate abnormality within the peripheral zone using local peak information. In 3rd International Conference on Pattern Recognition Applications and Methods (ICPRAM'14). SCITEPRESS.
- Rubner, Y., Tomasi, C., and Guibas., L. J. (2000). The earth movers distance as a metric for image retrieval. International Journal of Computer Vision, 40(2):99-121.
- Schlemmer, H. P., Merkle, J., and Grobholz, R. (2004). Can preoperative contrast-enhanced dynamic mr imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol, 14:309-317.
- Shimofusa, R., Fujimoto, H., Akamata, H., Motoori, K., Yamamoto, S., Ueda, T., and Ito, H. (2005). Diffusionweighted imaging of prostate cancer. J Comput Assist Tomogr, 29:149-153.
- Sung, Y. S., Kwon, H.-J., Park, B. W., Cho, G., Lee, C. K., Cho, K.-S., and Kim, J. K. (2011). Prostate cancer detection on dynamic contrast-enhanced mri: Computer-aided diagnosis versus single perfusion parameter maps. American Journal of Roentgenology, 197(5):1122-1129.
- Tabesh, A., Teverovskiy, M., Pang, H. Y., Kumar, V. P., Verbel, D., Kotsianti, A., and Saidi, O. (2007). Multifeature prostate cancer diagnosis and gleason grading of histological images. IEEE Trans. Med. Imag., 26(10):1366-1378.
- Taneja, S. S. (2004). Imaging in the diagnosis and management of prostate cancer. Reviews in Urology, 6(3):101-113.
- Tiwari, P., Kurhanewicz, J., Rosen, M., and Madabhushi, A. (2010). Semi supervised multi kernel (sesmik) graph embedding: identifying aggressive prostate cancer via magnetic resonance imaging and spectroscopy. In Medical Image Computing and Computer-Assisted Intervention MICCAI. Springer.
- Vos, P. C., Hambrock, T., Barentsz, J., and Huisman, H. (2010). Computer-assisted analysis of peripheral zone prostate lesions using t2-weighted and dynamic contrast enhanced t1-weighted mri. Physics in Medicine and Biology, 55:1719-1734.
- Yu, K. K. and Hricak, H. (2000). Imaging prostate cancer. Radiol Clin North Am, 38(1):59-85.
Paper Citation
in Harvard Style
Rampun A., Malcolm P. and Zwiggelaar R. (2015). A Block-based Approach for Malignancy Detection within the Prostate Peripheral Zone in T2-weighted MRI . In Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2015) ISBN 978-989-758-072-7, pages 56-63. DOI: 10.5220/0005179000560063
in Bibtex Style
@conference{bioimaging15,
author={Andrik Rampun and Paul Malcolm and Reyer Zwiggelaar},
title={A Block-based Approach for Malignancy Detection within the Prostate Peripheral Zone in T2-weighted MRI},
booktitle={Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2015)},
year={2015},
pages={56-63},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005179000560063},
isbn={978-989-758-072-7},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Bioimaging - Volume 1: BIOIMAGING, (BIOSTEC 2015)
TI - A Block-based Approach for Malignancy Detection within the Prostate Peripheral Zone in T2-weighted MRI
SN - 978-989-758-072-7
AU - Rampun A.
AU - Malcolm P.
AU - Zwiggelaar R.
PY - 2015
SP - 56
EP - 63
DO - 10.5220/0005179000560063