On Combining the Dielectrophoresis and Microdevices - Investigation of Hippocampal Neuronal Viability after Implementing Dielectrophoretic Positioning on Multi-Electrode Arrays

Tianyi Zhou, Susan Perry, Svetlana Tatic-Lucic

2015

Abstract

In this work, we have investigated the viability of embryonic mouse hippocampal neurons after dielectrophoretic positioning on multi-electrode arrays (MEA). We present a systematic evaluation of positive dielectrophoretic conditions, including 1) an investigation of the effect of 10% sucrose (w/v in deionized water), a commonly used, low-conductivity buffer medium, on the viability of mouse hippocampal neurons over different time periods, and 2) a study of the effect of the membrane potential induced by DEP electric field on the integrity of the cell membrane. Post-DEP high neuronal viability was achieved experimentally, and spontaneous neuronal potentials from trapped neurons on the MEA were successfully recorded.

References

  1. Berdondini, L., Imfeld, K., Maccione, A., Tedesco, M., Neukom, S., Koudelka-Hep, M., and Martinoia, S., 2009. Active pixel sensor array for high spatiotemporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip, 9, 2644-2651.
  2. Buzsaki, G., Anastassiou, C. A., and Koch, C., 2012. The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci., 13, 407- 420.
  3. Chitwood, R. A., Hubbard, A., and Jaffe, D. B., 1999. Passive electrotonic properties of rat hippocampal CA3 interneurones. J. Physiol., 515(3), 743-756.
  4. Gagnon, Z. R., 2011. Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis, 32, 2466-2487.
  5. Gentet, L. J., Stuart, G. J., and Clements, J. D., 2000. Direct measurement of specific membrane capacitance in neurons. Biophys. J., 79, 314-320.
  6. Gupta, V., Jafferji, I., Garza, M., Melnikova, V. O., Hasegawa, D. K., Pethig, R., and Davis, D. W., 2012. ApoStream, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics, 6, 024133.
  7. Heida, T., Vulto, P., Rutten, W. L. C., and Marani, E., 2001. Viability of dielectrophoretically trapped neural cortical cells in culture. J. Neurosci. Methods, 110, 37- 44.
  8. Heida, T., Wagenaar, J. B., Rutten, W. L. C., and Marani, E., 2002. Investigating membrane breakdown of neuronal cells exposed to nonuniform electric fields by finite-element modeling and experiments. IEEE Trans. Biomed. Eng., 49(10), 1195-1203.
  9. Ho, C. T. et al., 2013. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab Chip, 13, 3578-3587.
  10. Hochberg, L. R. et al., 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nat., 442, 164-171.
  11. Honegger, T., Scott, M. A., Yanik, M. F., and Voldman, J., 2013. Electrokinetic confinement of axonal growth for dynamically configurable neural networks. Lab Chip, 13, 589-598.
  12. Huang, C., Liu, C., Loo, J., Stakenborg, T., and Lagae, L., 2014. Single cell viability observation in cell dielectrophoretic trapping on a microchip. Appl. Phys. Lett., 104, 013703.
  13. Jaber, F. T., Labeed, F. H., and Hughes, M. P., 2009. Action potential recording from dielectrophoretically positioned neurons inside micro-wells of a planar microelectrode array. J. Neurosci. Methods, 182, 225- 235.
  14. Jeng, C. P., Huang, C. T., and Shih, H. Y., 2010. Hydrodynamic separation of cells utilizing insulatorbased dielectrophoresis. Microsystem Technologies, 16(7), 1097-1104.
  15. Jones, T. B., 1995. Electromechanics of Particles, Cambridge University Press. New York, pp. 34-81.
  16. LaLonde, A., Romero-Creel, M. F., and Lapizco-Encinas, B. H., 2014. Assessment of cell viability after manipulation with insulator-based dielectrophoresis. Electrophoresis, 35, 1-6.
  17. Li, M., Li, W. H., Zhang, J., Alici, G., and Wen, W., 2014. A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation. J. Phys. D: Appl. Phys., 47, 063001.
  18. Lu, J., Barrios, C. A., Dickson, A. R., Nourse, J. L., Lee, A. P., and Flanagan, L. A., 2012. Advancing practical usage of microtechnology: a study of the functional consequences of dielectrophoresis on neural stem cells. Integr. Biol., 4, 1223-1236.
  19. Major, G., Larkman, A, U., Jonas, P., Sakmann, B., and Jack, J. J., 1994. Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J. Neurosci., 14(8), 4613-4638.
  20. Pethig, R., 2010. Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics, 4, 022811.
  21. Pohl, H. A., 1978. Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields, Cambridge University Press. New York.
  22. Prieto, J. L., Lu, J., Nourse, J. L., Flanagan, L. A., and Lee, A. P., 2012. Frequency discretization in dielectrophoretic assisted cell sorting arrays to isolate neural cells. Lab Chip, 12, 2182-2189.
  23. Rozitsky, L., Fine, A., Dado, D., Nussbaum-Ben-Shaul, S., Lenvenberg, S., and Yossifon, D., 2013. Quantifying continuous-flow dielectrophoretic trapping of cells and micro-particles on microelectrode array. Biomed. Microdevices, 15, 859-865.
  24. Spira, M. E., and Hai, A., 2013. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotech., 8, 83-94.
  25. Stevenson, I. H., and Kording, K. P., 2011. How advances in neural recording affect data analysis. Nat. Neurosci., 14, 139-142.
  26. Vahey, M. D., and Voldman, J., 2009. High-throughput cell and particle characterization using isodielectric separation. Anal. Chem., 81(7), 2446-2455.
  27. Viventi, J. et al., 2011. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci., 14, 1599-1605.
  28. Yoshimura, Y., Tomita, M., Mizutani, F., and Yasukawa, T., 2014. Cell pairing using microwell array electrodes based on dielectrophoresis. Anal. Chem., 86(14), 6818-6822.
  29. Zimmermann, U., and Neil, G. A., 1996. Electromanupulation of Cells, CRC Press. Florida.
  30. Zhou, T., and Tatic-Lucic, S., 2012. On application of positive dielectrophoresis and microstructure confinement on multielectrode array with sensory applications. In Proc. IEEE Sensors Conf., Taipei, Taiwan.
  31. Zhou, T., Petryna, S., Fluck, V., Perry, S. F., and TaticLucic, S., 2014. Separation and assisted patterning of hippocampal neurons from glial cells using positive dielectrophoresis. In submission.
Download


Paper Citation


in Harvard Style

Zhou T., Perry S. and Tatic-Lucic S. (2015). On Combining the Dielectrophoresis and Microdevices - Investigation of Hippocampal Neuronal Viability after Implementing Dielectrophoretic Positioning on Multi-Electrode Arrays . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015) ISBN 978-989-758-071-0, pages 71-77. DOI: 10.5220/0005180200710077


in Bibtex Style

@conference{biodevices15,
author={Tianyi Zhou and Susan Perry and Svetlana Tatic-Lucic},
title={On Combining the Dielectrophoresis and Microdevices - Investigation of Hippocampal Neuronal Viability after Implementing Dielectrophoretic Positioning on Multi-Electrode Arrays},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015)},
year={2015},
pages={71-77},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005180200710077},
isbn={978-989-758-071-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015)
TI - On Combining the Dielectrophoresis and Microdevices - Investigation of Hippocampal Neuronal Viability after Implementing Dielectrophoretic Positioning on Multi-Electrode Arrays
SN - 978-989-758-071-0
AU - Zhou T.
AU - Perry S.
AU - Tatic-Lucic S.
PY - 2015
SP - 71
EP - 77
DO - 10.5220/0005180200710077