On Combining the Dielectrophoresis and Microdevices - Investigation of Hippocampal Neuronal Viability after Implementing Dielectrophoretic Positioning on Multi-Electrode Arrays
Tianyi Zhou, Susan Perry, Svetlana Tatic-Lucic
2015
Abstract
In this work, we have investigated the viability of embryonic mouse hippocampal neurons after dielectrophoretic positioning on multi-electrode arrays (MEA). We present a systematic evaluation of positive dielectrophoretic conditions, including 1) an investigation of the effect of 10% sucrose (w/v in deionized water), a commonly used, low-conductivity buffer medium, on the viability of mouse hippocampal neurons over different time periods, and 2) a study of the effect of the membrane potential induced by DEP electric field on the integrity of the cell membrane. Post-DEP high neuronal viability was achieved experimentally, and spontaneous neuronal potentials from trapped neurons on the MEA were successfully recorded.
References
- Berdondini, L., Imfeld, K., Maccione, A., Tedesco, M., Neukom, S., Koudelka-Hep, M., and Martinoia, S., 2009. Active pixel sensor array for high spatiotemporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip, 9, 2644-2651.
- Buzsaki, G., Anastassiou, C. A., and Koch, C., 2012. The origin of extracellular fields and currents - EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci., 13, 407- 420.
- Chitwood, R. A., Hubbard, A., and Jaffe, D. B., 1999. Passive electrotonic properties of rat hippocampal CA3 interneurones. J. Physiol., 515(3), 743-756.
- Gagnon, Z. R., 2011. Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cells. Electrophoresis, 32, 2466-2487.
- Gentet, L. J., Stuart, G. J., and Clements, J. D., 2000. Direct measurement of specific membrane capacitance in neurons. Biophys. J., 79, 314-320.
- Gupta, V., Jafferji, I., Garza, M., Melnikova, V. O., Hasegawa, D. K., Pethig, R., and Davis, D. W., 2012. ApoStream, a new dielectrophoretic device for antibody independent isolation and recovery of viable cancer cells from blood. Biomicrofluidics, 6, 024133.
- Heida, T., Vulto, P., Rutten, W. L. C., and Marani, E., 2001. Viability of dielectrophoretically trapped neural cortical cells in culture. J. Neurosci. Methods, 110, 37- 44.
- Heida, T., Wagenaar, J. B., Rutten, W. L. C., and Marani, E., 2002. Investigating membrane breakdown of neuronal cells exposed to nonuniform electric fields by finite-element modeling and experiments. IEEE Trans. Biomed. Eng., 49(10), 1195-1203.
- Ho, C. T. et al., 2013. Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue. Lab Chip, 13, 3578-3587.
- Hochberg, L. R. et al., 2006. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nat., 442, 164-171.
- Honegger, T., Scott, M. A., Yanik, M. F., and Voldman, J., 2013. Electrokinetic confinement of axonal growth for dynamically configurable neural networks. Lab Chip, 13, 589-598.
- Huang, C., Liu, C., Loo, J., Stakenborg, T., and Lagae, L., 2014. Single cell viability observation in cell dielectrophoretic trapping on a microchip. Appl. Phys. Lett., 104, 013703.
- Jaber, F. T., Labeed, F. H., and Hughes, M. P., 2009. Action potential recording from dielectrophoretically positioned neurons inside micro-wells of a planar microelectrode array. J. Neurosci. Methods, 182, 225- 235.
- Jeng, C. P., Huang, C. T., and Shih, H. Y., 2010. Hydrodynamic separation of cells utilizing insulatorbased dielectrophoresis. Microsystem Technologies, 16(7), 1097-1104.
- Jones, T. B., 1995. Electromechanics of Particles, Cambridge University Press. New York, pp. 34-81.
- LaLonde, A., Romero-Creel, M. F., and Lapizco-Encinas, B. H., 2014. Assessment of cell viability after manipulation with insulator-based dielectrophoresis. Electrophoresis, 35, 1-6.
- Li, M., Li, W. H., Zhang, J., Alici, G., and Wen, W., 2014. A review of microfabrication techniques and dielectrophoretic microdevices for particle manipulation and separation. J. Phys. D: Appl. Phys., 47, 063001.
- Lu, J., Barrios, C. A., Dickson, A. R., Nourse, J. L., Lee, A. P., and Flanagan, L. A., 2012. Advancing practical usage of microtechnology: a study of the functional consequences of dielectrophoresis on neural stem cells. Integr. Biol., 4, 1223-1236.
- Major, G., Larkman, A, U., Jonas, P., Sakmann, B., and Jack, J. J., 1994. Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J. Neurosci., 14(8), 4613-4638.
- Pethig, R., 2010. Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics, 4, 022811.
- Pohl, H. A., 1978. Dielectrophoresis: The behavior of neutral matter in nonuniform electric fields, Cambridge University Press. New York.
- Prieto, J. L., Lu, J., Nourse, J. L., Flanagan, L. A., and Lee, A. P., 2012. Frequency discretization in dielectrophoretic assisted cell sorting arrays to isolate neural cells. Lab Chip, 12, 2182-2189.
- Rozitsky, L., Fine, A., Dado, D., Nussbaum-Ben-Shaul, S., Lenvenberg, S., and Yossifon, D., 2013. Quantifying continuous-flow dielectrophoretic trapping of cells and micro-particles on microelectrode array. Biomed. Microdevices, 15, 859-865.
- Spira, M. E., and Hai, A., 2013. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotech., 8, 83-94.
- Stevenson, I. H., and Kording, K. P., 2011. How advances in neural recording affect data analysis. Nat. Neurosci., 14, 139-142.
- Vahey, M. D., and Voldman, J., 2009. High-throughput cell and particle characterization using isodielectric separation. Anal. Chem., 81(7), 2446-2455.
- Viventi, J. et al., 2011. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci., 14, 1599-1605.
- Yoshimura, Y., Tomita, M., Mizutani, F., and Yasukawa, T., 2014. Cell pairing using microwell array electrodes based on dielectrophoresis. Anal. Chem., 86(14), 6818-6822.
- Zimmermann, U., and Neil, G. A., 1996. Electromanupulation of Cells, CRC Press. Florida.
- Zhou, T., and Tatic-Lucic, S., 2012. On application of positive dielectrophoresis and microstructure confinement on multielectrode array with sensory applications. In Proc. IEEE Sensors Conf., Taipei, Taiwan.
- Zhou, T., Petryna, S., Fluck, V., Perry, S. F., and TaticLucic, S., 2014. Separation and assisted patterning of hippocampal neurons from glial cells using positive dielectrophoresis. In submission.
Paper Citation
in Harvard Style
Zhou T., Perry S. and Tatic-Lucic S. (2015). On Combining the Dielectrophoresis and Microdevices - Investigation of Hippocampal Neuronal Viability after Implementing Dielectrophoretic Positioning on Multi-Electrode Arrays . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015) ISBN 978-989-758-071-0, pages 71-77. DOI: 10.5220/0005180200710077
in Bibtex Style
@conference{biodevices15,
author={Tianyi Zhou and Susan Perry and Svetlana Tatic-Lucic},
title={On Combining the Dielectrophoresis and Microdevices - Investigation of Hippocampal Neuronal Viability after Implementing Dielectrophoretic Positioning on Multi-Electrode Arrays},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015)},
year={2015},
pages={71-77},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005180200710077},
isbn={978-989-758-071-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2015)
TI - On Combining the Dielectrophoresis and Microdevices - Investigation of Hippocampal Neuronal Viability after Implementing Dielectrophoretic Positioning on Multi-Electrode Arrays
SN - 978-989-758-071-0
AU - Zhou T.
AU - Perry S.
AU - Tatic-Lucic S.
PY - 2015
SP - 71
EP - 77
DO - 10.5220/0005180200710077