3-D Shape Matching for Face Analysis and Recognition

Wei Quan, Bogdan Matuszewski, Lik-Kwan Shark

2015

Abstract

The aims of this paper are to introduce a 3-D shape matching scheme for automatic face recognition and to demonstrate its invariance to pose and facial expressions. The core of this scheme lies on the combination of non-rigid deformation registration and statistical shape modelling. While the former matches 3-D faces regardless of facial expression variations, the latter provides a low-dimensional feature vector that describes the deformation after the shape matching process, thereby enabling robust identification of 3-D faces. In order to assist establishment of accurate dense point correspondences, an isometric embedding shape representation is introduced, which is able to transform 3-D faces to a canonical form that retains the intrinsic geometric structure and achieve shape alignment of 3-D faces independent from individual’s facial expression. The feasibility and effectiveness of the proposed method was investigated using standard publicly available Gavab and BU-3DFE databases, which contain faces expressions and pose variations. The performance of the system was compared with the existing benchmark approaches and it demonstrates that the proposed scheme provides a competitive solution for the face recognition task with real-world practicality.

References

  1. Berretti, S., Bimbo, A., Pala, P., 2006. 3D face recognition by modelling the arrangement of concave and convex regions. Adaptive Multimedia Retrieval, 108-118.
  2. Bronstein, A., Bronstein, M., Kimmel, R., 2005. Threedimensional face recognition. International Journal of Computer Vision, 64(1), 5-30.
  3. Bronstein, A., Bronstein, M., Kimmel, R., 2007. Expression-invariant representation of faces. IEEE Transactions on Image Processing, 16(1), 188-197.
  4. Bronstein, M., Bronstein, A., Kimmel, R., Yavneh, I., (2006). Multigrid multidimensional scaling. Numerical Linear Algebra with Applications, 13, 149- 171.
  5. Chang, K., Bowyer, K., Flynn, P., 2003. Multi-modal 2D and 3D biometrics for face recognition. Proceeding of IEEE Workshop Analysis and Modelling of Face and Gestures, 187-194.
  6. Chang, K., Bowyer, K., Flynn, P., 2006. Multiple nose region matching for 3-D face recognition under varying facial expression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1695-1700.
  7. Chellappa, R., Wilson, C., Sirohey, S., 1995. Human and machine recognition of faces: a survey. Proceeding of IEEE, 83(5), 705-740.
  8. Chua, C., Han, F., Ho, Y., 2002. 3-D Human face recognition using point signature. Proceeding of International Conference Automatic Face and Gesture Recognition, 233-238.
  9. Drira, H., Amor, B., Mohammed, D., Srivastava, A., 2010. Pose and expression-invariant 3-D face recognition using elastic radial curves. British Machine Vision Conference.
  10. Elad, A., Kimmel, R., 2003. On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1285- 1295.
  11. Hastie, T., Tibshirani, R., Friedman, J., 2001. The elements of statistical learning. Springer Series in Statistic, Second Edition, Springer.
  12. Hajati, F., Raie, A., Gao, Y., 2012. 2.5D face recognition using patch geodesic moments. Pattern Recognition, 45(2012), 969-982.
  13. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H., 2005. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence. 27(3), 328-340.
  14. Huang, D., Ardabilian, M., Wang, Y., Chen, L., 2012. 3-D face recognition using eLBP-based facial description and local feature hybrid matching. IEEE Transactions on Information Forensics and Security, 7(5), 1551- 1565.
  15. Kong, S., Heo, J., Abidi, B., Paik, J., Abidi, M., 2005. Recent advances in visual and infrared face recognition - a review. Computer Vision and Image Understanding, 97, 103-135.
  16. Li, X., Jia, T., Zhang, H., 2009. Expression-insensitive 3D face recognition using sparse representation. Conference on Computer Vision and Pattern Recognition. 2575-2582.
  17. Lu, Y., Zhou, J., Yu, S., 2003. A survey of face detection, extraction and recognition. Computing and Informatics Pattern Recognition, 22(2), 163-195.
  18. Lu, X., Jain, A., 2008. Deformation modeling for robust 3D face matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8), 1346-1356.
  19. Mahoor, M., Abdel-Mottaleb, M., 2009. Face recognition based on 3D ridge images obtained from range data. Pattern Recognition. 42(3), 445-451.
  20. Mohammadzade, H., Hatzinakos, D., 2013. Iterative closest normal point for 3D face recognition. IEEE Transaction on Pattern Analysis and machine intelligence. 35(2), 381-397.
  21. Moreno, A., Sanchez, A., 2004. GavaDB: a 3D face database. COST Workshop on Biometrics on Internet: Fundamentals, Advances and Applications. 77-82.
  22. Mpiperis, I., Malassiotis, S., Strintzis, M., 2007. 3-D face recognition with the geodesic polar representation. IEEE Transaction on Information Forensic and Security. 2(3), 537-547.
  23. Pan, P., Wu, Z., Pan, Y., 2003. Automatic 3D face verification from range data. Proceeding of International Conference on Acoustic, Speech, and Signal Processing (ICASSP 03), 3, 193-196.
  24. Jafri, R., Ardabilian, H., 2009. A survey of face recognition techniques. Journal of Information Processing Systems, 53(2), 41-66.
  25. Jenkins, R., White, D., Van-Montfort, X., Burton, A., 2011. Variability in photos of the same face. Cognition, 121, 313-323.
  26. Rizvi, S., Philips, P., Moon, H., 1998. The FERET verification test protocol for face recognition algorithms. IEEE International Conference on Automatic Face and Gesture Recognition.
  27. Quan, W., Matuszewski, B., Shark, L., Ait-Boudaoud, D., 2009. Facial expression biometrics using statistical shape models. EURASIP Journal on Advances in Signal Processing.
  28. Yin, L., Weim, X., Sun, Y., Wang, J., Rosato, M., 2006. A 3D facial expression database for facial behavior research. Proceeding of 7th International Conference on Automatic Face and Gesture Recognition, 221-216.
Download


Paper Citation


in Harvard Style

Quan W., Matuszewski B. and Shark L. (2015). 3-D Shape Matching for Face Analysis and Recognition . In Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM, ISBN 978-989-758-077-2, pages 45-52. DOI: 10.5220/0005180300450052


in Bibtex Style

@conference{icpram15,
author={Wei Quan and Bogdan Matuszewski and Lik-Kwan Shark},
title={3-D Shape Matching for Face Analysis and Recognition},
booktitle={Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,},
year={2015},
pages={45-52},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005180300450052},
isbn={978-989-758-077-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,
TI - 3-D Shape Matching for Face Analysis and Recognition
SN - 978-989-758-077-2
AU - Quan W.
AU - Matuszewski B.
AU - Shark L.
PY - 2015
SP - 45
EP - 52
DO - 10.5220/0005180300450052