Brain Activity Quantification for Sport Audiovisual Content Visualization using EEG

Adrián Colomer, Valery Naranjo, Jaime Guixeres, Juan Carlos Rojas, Javier Coret, Mariano Alcañiz

2015

Abstract

This study aims to analyse the brain activity occurring during the observation of football videos randomly intermingled in a documentary. The electroencephalography recording is employed to measure the signal scalp of 20 healthy subjects. The signal preprocessing is performed using Independent Component Analysis (ICA) and ADJUST. The cerebral activity is quantified through Global Field Power (GFP) in order to classify the clips following an emotive scale, to establish differences between positive and negative video stimuli. Results are summarized as follows: (1) Comparing the cerebral activity of a positive video with its predecessor neutral stimulus, significant differences were obtained (p = .0019). However, the same analysis for negative videos shows no significant differences (p = .096). (2) The number of peaks in brain activity allow us to classify the videos used in the study. (3) The brain activity in theta and beta bands presents different distribution of peaks, occurring at different frames.

References

  1. Brouwer, A.-M., Neerincx, M., Kallen, V., Van Der Leer, L., and ten Brinke, M. (2011). Eeg alpha asymmetry, heart rate variability and cortisol in response to virtual reality induced stress. Journal of Cybertherapy and Rehabilitation, 4(1):27-40.
  2. Delorme, A. and Makeig, S. (2004). Eeglab: an open source toolbox for analysis of single-trial eeg dynamics. Journal of Neuroscience Methods, 134:9-21.
  3. Klucharev, V., Smidts, A., and Fernandez, G. (2008). Brain mechanisms of persuasion: How ”expert power” modulates memory and attitudes. Soc Cogn Affect Neurosci, 3(4):353-366.
  4. Lehmann, D. and Skrandies, W. (1980). Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalography and clinical neurophysiology, 48(6):609-621.
  5. Mognon, A., Jovicich, J., Bruzzone, L., and Buiatti, M. (2011). Adjust: An automatic eeg artifact detector based on the joint use of spatial and temporal features. Psychophysiology, 48(2):229-240.
  6. Norhazman, H., Mohamad Zaini, N., Taib, M. N., Omar, H. A., Jailani, R., and Lias, S. (2012). Behaviour of eeg alpha asymmetry when stress is induced and binaural is applied. In International Symposium on Computer Applications and Industrial Electronics (ISCAIE 2012), pages 297-301, Kota Kinabalu, Malaysia.
  7. Sanei, S. and Chambers, J. A. (2007). EEG Signal Processing. Wiley.
  8. Sulaiman, N., Taib, M. N., Aris, S. A. M., Hamid, N. H. A., Lias, S., and Murat, Z. H. (2010). Stress features identification from eeg signals using eeg asymmetry & spectral centroids techniques. In Biomedical Engineering and Sciences (IECBES), 2010 IEEE EMBS Conference on, pages 417-421. IEEE.
  9. Sulaiman, N., Taib, M. N., Lias, S., Murat, Z. H., Aris, S. A. M., and Hamid, N. H. A. (2011). Novel methods for stress features identification using eeg signals. International Journal of Simulation, Systems, Science and Technology, 12(1):27-33.
  10. Vecchiato, G., Astolfi, L., De Vico Fallani, F., Cincotti, F., Mattia, D., Salinari, S., Soranzo, R., and Babiloni, F. (2010a). Changes in brain activity during the observation of tv commercials by using eeg, gsr and hr measurements. Brain Topogr, 23(2):165-79.
  11. Vecchiato, G., Astolfi, L., Tabarrini, A., Salinari, S., Mattia, D., Cincotti, F., Bianchi, L., Sorrentino, D., Aloise, F., Soranzo, R., and Babiloni, F. (2010b). Eeg analysis of the brain activity during the observation of commercial, political, or public service announcements. Comp. Int. and Neurosc.
Download


Paper Citation


in Harvard Style

Colomer A., Naranjo V., Guixeres J., Rojas J., Coret J. and Alcañiz M. (2015). Brain Activity Quantification for Sport Audiovisual Content Visualization using EEG . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015) ISBN 978-989-758-069-7, pages 145-149. DOI: 10.5220/0005184001450149


in Bibtex Style

@conference{biosignals15,
author={Adrián Colomer and Valery Naranjo and Jaime Guixeres and Juan Carlos Rojas and Javier Coret and Mariano Alcañiz},
title={Brain Activity Quantification for Sport Audiovisual Content Visualization using EEG},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)},
year={2015},
pages={145-149},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005184001450149},
isbn={978-989-758-069-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)
TI - Brain Activity Quantification for Sport Audiovisual Content Visualization using EEG
SN - 978-989-758-069-7
AU - Colomer A.
AU - Naranjo V.
AU - Guixeres J.
AU - Rojas J.
AU - Coret J.
AU - Alcañiz M.
PY - 2015
SP - 145
EP - 149
DO - 10.5220/0005184001450149