Shape-based Object Retrieval and Classification with Supervised Optimisation
Cong Yang, Oliver Tiebe, Pit Pietsch, Christian Feinen, Udo Kelter, Marcin Grzegorzek
2015
Abstract
In order to enhance the performance of shape retrieval and classification, in this paper, we propose a novel shape descriptor with low computation complexity that can be easily fused with other meaningful descriptors like shape context, etc. This leads to a significant increase in descriptive power of original descriptors without adding to much computation complexity. To make the proposed shape descriptor more practical and general, a supervised optimisation strategy is introduced. The most significant scientific contributions of this paper includes the introduction of a new and simple feature descriptor with supervised optimisation strategy leading to the impressive improvement of the accuracy in object classification and retrieval scenario.
References
- Bai, X. and Latecki, L. (2008). Path similarity skeleton graph matching. PAMI, 30(7):1282-1292.
- Bai, X., Latecki, L., and yu Liu, W. (2007). Skeleton pruning by contour partitioning with discrete curve evolution. PAMI, 29(3):449-462.
- Bai, X., Liu, W., and Tu, Z. (2009). Integrating contour and skeleton for shape classification. In ICCV Workshops, pages 360-367.
- Bai, X., Yang, X., Latecki, L., Liu, W., and Tu, Z. (2010). Learning context-sensitive shape similarity by graph transduction. PAMI, 32(5):861-874.
- Baseski, E., Erdem, A., and Tari, S. (2009). Dissimilarity between two skeletal trees in a context. Pattern Recognition, 42(3):370-385.
- Belongie, S., Malik, J., and Puzicha, J. (2002). Shape matching and object recognition using shape contexts. PAMI, 24(4):509-522.
- Cao, Y., Zhang, Z., Czogiel, I., Dryden, I., and Wang, S. (2011). 2d nonrigid partial shape matching using mcmc and contour subdivision. In CVPR, pages 2345-2352.
- Chang, M.-C. and Kimia, B. (2009). Measuring 3d shape similarity by matching the medial scaffolds. In ICCV, pages 1473-1480.
- Del Bimbo, A. and Pala, P. (1997). Visual image retrieval by elastic matching of user sketches. PAMI, 19(2):121- 132.
- Donoser, M. and Bischof, H. (2013). Diffusion processes for retrieval revisited. In CVPR, pages 1320-1327.
- Goh, W.-B. (2008). Strategies for shape matching using skeletons. CVIU, 110(3):326-345.
- Hazewinkel, M. (2001). Chi-squared Distribution. Encyclopedia of Mathematics, Springer.
- Hedrich, J., Yang, C., Feinen, C., Schaefer, S., Paulus, D., and Grzegorzek, M. (2013). Extended investigations on skeleton graph matching for object recognition. In ICCRS, pages 371-381. Springer LNCS.
- Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated annealing. Science, pages 671-680.
- Li, C., Shirahama, K., Grzegorzek, M., Ma, F., and Zhou, B. (2013). Classification of environmental microorganisms in microscopic images using shape features and support vector machines. In ICIP, pages 2435- 2439. IEEE Computer Society.
- Ling, H. and Jacobs, D. (2007). Shape classification using the inner-distance. PAMI, 29(2):286-299.
- Mmoli, F. (2007). On the use of gromov-hausdorff distances for shape comparison. In SPBG, pages 81-90.
- Nguyen, D. T., Ogunbona, P. O., and Li, W. (2013). A novel shape-based non-redundant local binary pattern descriptor for object detection. Pattern Recognition, 46(5):1485-1500.
- Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern Approach. Prentice Hall Press, 3rd edition.
- Sebastian, T. and Kimia, B. (2001). Curves vs skeletons in object recognition. In ICIP, volume 3, pages 22-25.
- Shotton, J., Blake, A., and Cipolla, R. (2005). Contourbased learning for object detection. In ICCV, volume 1, pages 503-510.
- Siddiqi, K., Shokoufandeh, A., Dickenson, S., and Zucker, S. (1998). Shock graphs and shape matching. In ICCV, pages 222-229.
- Sun, K. and Super, B. (2005). Classification of contour shapes using class segment sets. In CVPR 2005, volume 2, pages 727-733.
- Viola, P. and Jones, M. J. (2004). Robust real-time face detection. Int. J. Comput. Vision, 57(2):137-154.
- Yang, C., Li, C., Tiebe, O., Shirahama, K., and Grzegorzek, M. (2014a). Shape-based classification of environmental microorganisms. In ICPR, pages 3374-3379.
- Yang, C., Tiebe, O., Pietsch, P., Feinen, C., Kelter, U., and Grzegorzek, M. (2014b). Shape-based object retrieval by contour segment matching. In ICIP, pages 2202- 2206.
- Yang, X., Liu, H., and Latecki, L. J. (2012). Contour-based object detection as dominant set computation. Pattern Recognition, 45(5):1927-1936.
- Zhang, D. and Lu, G. (2004). Review of shape representation and description techniques. Pattern Recognition, 37:1-19.
Paper Citation
in Harvard Style
Yang C., Tiebe O., Pietsch P., Feinen C., Kelter U. and Grzegorzek M. (2015). Shape-based Object Retrieval and Classification with Supervised Optimisation . In Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-076-5, pages 204-211. DOI: 10.5220/0005186402040211
in Bibtex Style
@conference{icpram15,
author={Cong Yang and Oliver Tiebe and Pit Pietsch and Christian Feinen and Udo Kelter and Marcin Grzegorzek},
title={Shape-based Object Retrieval and Classification with Supervised Optimisation},
booktitle={Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2015},
pages={204-211},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005186402040211},
isbn={978-989-758-076-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Shape-based Object Retrieval and Classification with Supervised Optimisation
SN - 978-989-758-076-5
AU - Yang C.
AU - Tiebe O.
AU - Pietsch P.
AU - Feinen C.
AU - Kelter U.
AU - Grzegorzek M.
PY - 2015
SP - 204
EP - 211
DO - 10.5220/0005186402040211