Automated Respiration Detection from Neonatal Video Data
Ninah Koolen, Olivier Decroupet, Anneleen Dereymaeker, Katrien Jansen, Jan Vervisch, Vladimir Matic, Bart Vanrumste, Gunnar Naulaers, Sabine Van Huffel, Maarten De Vos
2015
Abstract
In the interest of the neonatal comfort, the need for noncontact respiration monitoring increases. Moreover, home respiration monitoring would be beneficial. Therefore, the goal is to extract the respiration rate from video data included in a polysomnography. The presented method first uses Eulerian video magnification to amplify the respiration movements. A respiration signal is obtained through the optical flow algorithm. Independent component analysis and principal component analysis are applied to improve the signal quality, with minor enhancement of the signal quality. The respiratory rate is extracted as the dominant frequency in the spectrograms obtained using the short-time Fourier transform. Respiratory rate detection is successful (94.12%) for most patients during quiet sleep stages. Real-time monitoring could possibly be achieved by lowering the spatial and temporal resolutions of the input video data. The outline for successful video-aided detection of the respiration pattern is shown, thereby paving the way for improvement of the overall assessment in the NICU and application in a home-friendly environment.
References
- Aarts, L. A., Jeanne, V., Cleary, J. P., Lieber, C., Nelson, J.S., Bambang Oetomo, S., Verkruysse, W., 2013. Non-contact heart rate monitoring utilizing camera photoplethysmography in the neonatal intensive care unit - a pilot study. In Early Human Development, 89(12): p. 943-948.
- Abbas, A. and Heiman, K., 2009. Non-contact respiratory.
- monitoring based on real-time IR-thermography. In IFMBE Proceedings, 25(4): p. 1306-1309.
- Tan, S., 2011. Respiration rate monitoring methods: a review. In Pediatric pulmonology, 46(6): p. 523-529.
- Choi, J., Jeon,W. J., and Lee, S-C., 2008. Spatio-temporal pyramid matching for sports videos. In Proceeding of the first ACM international conference on Multimedia information retrieval. New York, USA: p. 291-297.
- Fleet, D. and Weiss, Y., 2006. Optical flow estimation. In Handbook of Mathematical Models in Computer Vision: p. 239-258.
- Folke, M., Cernerud, L., Ekström, M., and Hök, B., 2003. Critical review of non-invasive respiratory monitoring in medical care. In Medical & biological engineering & computing, 41(4): p. 377-383.
- Horn, B. K. and Schunck, B. G., 1981. Determining optical flow. In Artificial Intelligence, 17(1-3): p. 185- 203.
- Kwon, S., Kim, H., and Park, K. S., 2012. Validation of heart rate extraction using video imaging on a builtin camera system of a smartphone. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. San Diego, USA: p. 2174-2177.
- Li, C., Lubecke, V., Boric-Lubecke, O., and Lin, J., 2013. A review on recent advances in Doppler radar sensors for noncontact healthcare monitoring. In IEEE Transactions on microwave theory and techniques, 61(5): p. 2046-2060.
- Miller, H. and Behrle, F., 1953. Changing patterns of respiration in newborn infants. In Pediatrics, 12(2): p. 141-150.
- Nakjima, K., 2001. Development of real-time image sequence analysis for evaluating posture change and respiratory rate of a subject in bed. In Physiological Measurement, 22(3): p. 21-28.
- O'Donovan, P., 2005. Optical Flow: Techniques and Applications. In International Journal of Computer Vision, p. 1-26.
- Penne, J., Schaller, C., Hornegger, J., and Kuwert, T., 2008. Robust real-time 3D respiratory motion detection using time-of-flight cameras. In International Journal of Computer Assisted Radiology and Surgery, 3(5): p. 427-431.
- Sun, D., Roth, S., Lewis, J., and Black, M., 2008. Learning optical flow. In Computer Vision ECCV, Lecture Notes in Computer Science, 5304: p. 83-97.
- Tan, K., Saatchi, R., Elphick, H., and Burke, D., 2010. Real-time vision based respiration monitoring system. In Proceeding of the seventh IEEE IET International Symposium on Communication Systems, Networks and Digital Signal Processing. Newcastle, UK: p. 770- 774.
- Wu, H.-y., Rubinstein, M., Shih, E., and Freeman, W., 2012. Eulerian Video Magnification for Revealing Subtle Changes in theWorld. In Proceedings of ACM Transactions on Graphics, 31: p. 1-8.
Paper Citation
in Harvard Style
Koolen N., Decroupet O., Dereymaeker A., Jansen K., Vervisch J., Matic V., Vanrumste B., Naulaers G., Van Huffel S. and De Vos M. (2015). Automated Respiration Detection from Neonatal Video Data . In Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM, ISBN 978-989-758-077-2, pages 164-169. DOI: 10.5220/0005187901640169
in Bibtex Style
@conference{icpram15,
author={Ninah Koolen and Olivier Decroupet and Anneleen Dereymaeker and Katrien Jansen and Jan Vervisch and Vladimir Matic and Bart Vanrumste and Gunnar Naulaers and Sabine Van Huffel and Maarten De Vos},
title={Automated Respiration Detection from Neonatal Video Data},
booktitle={Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,},
year={2015},
pages={164-169},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005187901640169},
isbn={978-989-758-077-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 2: ICPRAM,
TI - Automated Respiration Detection from Neonatal Video Data
SN - 978-989-758-077-2
AU - Koolen N.
AU - Decroupet O.
AU - Dereymaeker A.
AU - Jansen K.
AU - Vervisch J.
AU - Matic V.
AU - Vanrumste B.
AU - Naulaers G.
AU - Van Huffel S.
AU - De Vos M.
PY - 2015
SP - 164
EP - 169
DO - 10.5220/0005187901640169