Periocular Recognition under Unconstrained Settings with Universal Background Models

João C. Monteiro, Jaime S. Cardoso

2015

Abstract

The rising challenges in the fields of iris and face recognition are leading to a renewed interest in the area. In recent years the focus of research has turned towards alternative traits to aid in the recognition process under less constrained image acquisition conditions. The present work assesses the potential of the periocular region as an alternative to both iris and face in such scenarios. An automatic modeling of SIFT descriptors, regardless of the number of detected keypoints and using a GMM-based Universal Background Model method, is proposed. This framework is based on the Universal Background Model strategy, first proposed for speaker verification, extrapolated into an image-based application. Such approach allows a tight coupling between individual models and a robust likelihood-ratio decision step. The algorithm was tested on the UBIRIS.v2 and the MobBIO databases and presented state-of-the-art performance for a variety of experimental setups.

References

  1. Bakshi, S., Kumari, S., Raman, R., and Sa, P. K. (2012). Evaluation of periocular over face biometric: A case study. Procedia Engineering, 38:1628-1633.
  2. Bharadwaj, S., Bhatt, H. S., Vatsa, M., and Singh, R. (2010). Periocular biometrics: When iris recognition fails. In 4th IEEE International Conference on Biometrics: Theory Applications and Systems, pages 1-6.
  3. Boddeti, V. N., Smereka, J. M., and Kumar, B. V. (2011). A comparative evaluation of iris and ocular recognition methods on challenging ocular images. In 2011 International Joint Conference on Biometrics, pages 1-8. IEEE.
  4. Joshi, A., Gangwar, A. K., and Saquib, Z. (2012). Person recognition based on fusion of iris and periocular biometrics. In Hybrid Intelligent Systems (HIS), 2012 12th International Conference on, pages 57-62. IEEE.
  5. Ke, Y. and Sukthankar, R. (2004). Pca-sift: A more distinctive representation for local image descriptors. In Computer Vision and Pattern Recognition, 2004.
  6. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on, volume 2, pages II-506. IEEE.
  7. Kinnunen, T., Saastamoinen, J., Hautamaki, V., Vinni, M., and Franti, P. (2009). Comparing maximum a posteriori vector quantization and gaussian mixture models in speaker verification. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 4229-4232. IEEE.
  8. Kittler, J., Hatef, M., Duin, R. P., and Matas, J. (1998). On combining classifiers. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(3):226-239.
  9. Kumar, A. and Chan, T.-S. (2012). Iris recognition using quaternionic sparse orientation code (qsoc). In 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pages 59- 64.
  10. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91-110.
  11. Miller, P. E., Lyle, J. R., Pundlik, S. J., and Woodard, D. L. (2010a). Performance evaluation of local appearance based periocular recognition. In IEEE International Conference on Biometrics: Theory, Applications, and Systems, pages 1-6.
  12. Miller, P. E., Rawls, A. W., Pundlik, S. J., and Woodard, D. L. (2010b). Personal identification using periocular skin texture. In 2010 ACM Symposium on Applied Computing, pages 1496-1500. ACM.
  13. Moreno, J. C., Prasath, V., and Proenc¸a, H. (2013a). Robust periocular recognition by fusing local to holistic sparse representations. In Proceedings of the 6th International Conference on Security of Information and Networks, pages 160-164. ACM.
  14. Moreno, J. C., Prasath, V. B. S., Santos, G. M. M., and Proenc¸a, H. (2013b). Robust periocular recognition by fusing sparse representations of color and geometry information. CoRR, abs/1309.2752.
  15. Nabney, I. T. (2004). NETLAB: algorithms for pattern recognition. Springer.
  16. Padole, C. N. and Proenca, H. (2012). Periocular recognition: Analysis of performance degradation factors. In 5th IAPR International Conference on Biometrics, pages 439-445.
  17. Park, U., Jillela, R. R., Ross, A., and Jain, A. K. (2011). Periocular biometrics in the visible spectrum. IEEE Transactions on Information Forensics and Security, 6(1):96-106.
  18. Park, U., Ross, A., and Jain, A. K. (2009). Periocular biometrics in the visible spectrum: A feasibility study. In IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, pages 1-6.
  19. Povey, D., Chu, S. M., and Varadarajan, B. (2008). Universal background model based speech recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing, pages 4561-4564.
  20. Proenc¸a, H. (2009). NICE:II: Noisy iris challenge evaluation - part ii. http://http://nice2.di.ubi.pt/.
  21. Proenc¸a, H. (2011). Non-cooperative iris recognition: Issues and trends. In 19th European Signal Processing Conference, pages 1-5.
  22. Proenc¸a, H. and Santos, G. (2012). Fusing color and shape descriptors in the recognition of degraded iris images acquired at visible wavelengths. Computer Vision and Image Understanding, 116(2):167-178.
  23. Proenc¸a, H., Filipe, S., Santos, R., Oliveira, J., and Alexandre, L. A. (2010). The ubiris.v2: A database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1529-1535.
  24. Reynolds, D. (2008). Gaussian mixture models. Encyclopedia of Biometric Recognition, pages 12-17.
  25. Reynolds, D., Quatieri, T., and Dunn, R. (2000). Speaker verification using adapted gaussian mixture models. Digital signal processing, 10(1):19-41.
  26. Reynolds, D. A. (2002). An overview of automatic speaker recognition technology. In Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on, volume 4, pages IV-4072. IEEE.
  27. Ross, A., Jillela, R., Smereka, J. M., Boddeti, V. N., Kumar, B. V., Barnard, R., Hu, X., Pauca, P., and Plemmons, R. (2012). Matching highly non-ideal ocular images: An information fusion approach. In Biometrics (ICB), 2012 5th IAPR International Conference on, pages 446-453. IEEE.
  28. Ross, A., Rattani, A., and Tistarelli, M. (2009). Exploiting the doddington zoo effect in biometric fusion. In Biometrics: Theory, Applications, and Systems, 2009. BTAS'09. IEEE 3rd International Conference on, pages 1-7. IEEE.
  29. Santos, G. and Proenc¸a, H. (2013). Periocular biometrics: An emerging technology for unconstrained scenarios. In Computational Intelligence in Biometrics and Identity Management (CIBIM), 2013 IEEE Workshop on, pages 14-21. IEEE.
  30. Sequeira, A. F., Monteiro, J. C., Rebelo, A., and Oliveira, H. P. (2014). MobBIO: a multimodal database captured with a portable handheld device. In Proceedings of International Conference on Computer Vision Theory and Applications (VISAPP).
  31. Shinoda, K. and Inoue, N. (2013). Reusing speech techniques for video semantic indexing [applications corner]. Signal Processing Magazine, IEEE, 30(2):118- 122.
  32. Smereka, J. M. and Kumar, B. (2013). What is a” good” periocular region for recognition? In Computer Vision and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference on, pages 117-124. IEEE.
  33. Tan, C.-W. and Kumar, A. (2013). Towards online iris and periocular recognition under relaxed imaging constraints. Image Processing, IEEE Transactions on, 22(10):3751-3765.
  34. Tan, T., Zhang, X., Sun, Z., and Zhang, H. (2011). Noisy iris image matching by using multiple cues. Pattern Recognition Letters.
  35. Vedaldi, A. and Fulkerson, B. (2010). Vlfeat: An open and portable library of computer vision algorithms. In Proceedings of the international conference on Multimedia, pages 1469-1472. ACM.
  36. Woodard, D. L., Pundlik, S. J., Lyle, J. R., and Miller, P. E. (2010). Periocular region appearance cues for biometric identification. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pages 162-169.
  37. Xiong, Z., Zheng, T., Song, Z., Soong, F., and Wu, W. (2006). A tree-based kernel selection approach to efficient gaussian mixture model-universal background model based speaker identification. Speech communication, 48(10):1273-1282.
Download


Paper Citation


in Harvard Style

C. Monteiro J. and S. Cardoso J. (2015). Periocular Recognition under Unconstrained Settings with Universal Background Models . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015) ISBN 978-989-758-069-7, pages 38-48. DOI: 10.5220/0005195900380048


in Bibtex Style

@conference{biosignals15,
author={João C. Monteiro and Jaime S. Cardoso},
title={Periocular Recognition under Unconstrained Settings with Universal Background Models},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)},
year={2015},
pages={38-48},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005195900380048},
isbn={978-989-758-069-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)
TI - Periocular Recognition under Unconstrained Settings with Universal Background Models
SN - 978-989-758-069-7
AU - C. Monteiro J.
AU - S. Cardoso J.
PY - 2015
SP - 38
EP - 48
DO - 10.5220/0005195900380048