Refracted Acoustic Communications in Wireless Underwater Sensor Networks with Mobility

S. Blouin, M. Barbeau, E. Kranakis

2015

Abstract

Routing is a fundamental function of any wireless network. For battery-powered underwater sensors using acoustic waves, routing is even more challenging due to an ever changing and communication-opaque ocean. Herein, we propose a shallow-water routing scheme that adapts to a unique physical phenomena of the medium. In particular, the proposed routing exploits downward and upward refractions for underwater networks comprising mobile nodes. Solutions for node-to-node links are developed before extending the concept to network routing. In particular, necessary and sufficient conditions guaranteeing the existence of a single-hop link through acoustic refraction are derived. Simulations convey results followed by concluding remarks.

References

  1. Blouin, S. and Inglis, G. (2013). Toward distributed noisesource localization for underwater sensor network. In
  2. (ISP) conference, pages 1-6, London, UK.
  3. Erbe, C. (2011). Underwater Acoustics: Noise and the Effects on Marine Mammals, A Pocket Handbook. Jasco Applied Science, 3rd edition. -www.jasco.com-.
  4. Hasannezhad, B., Barbeau, M., Blouin., S., Cervera, G., Garcia-Alfaro, J., and Kranakis, E. (2014). Simulation of underwater communications with colored noise approximation and mobility. submitted to the 28th annual IEEE Canadian Conference on Electrical and Computer Engineering (CCECE2015).
  5. Heard, G., Desharnais, F., Ebbeson, G., Fleming, R., and Schattschneider, G. (2009). The use of underwater communication networks in fixed and mobile sensing systems. In Underwater Acoustic Measurements, pages 597-604, Nafpilon, Greece.
  6. Johnson, D. and Maltz, A. (1996). Kluwer Academics Publishers.
  7. Karp, B. and Kung, H. (2000). GPSR: greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computing and networking (MobiCom), pages 243-254.
  8. Katsnelson, B., Petnikov, V., and Lynch, J. (2012). Fundamentals of Shallow-water Acoustics. Springer.
  9. Kinsler, L., Frey, A., Coppens, A., and Sanders, J. (1982). Fundamentals of Acoustics. John Wiley & Sons, Inc., third edition. pages 158-160 (model from Fisher and Simmons, J. Acoust. Soc. Am., 62, 558, 1977).
  10. Kinsler, L., Frey, A., Coppens, A., and Sanders, J. (2000). Fundamentals of Acoustics. John Wiley & Sons, Inc., fourth edition. pages 226-228.
  11. Li, Z., Li, R., Wei, Y., and Pei, T. (2010). A survey of localization techniques in wireless sensor networks. Information Technology Journal, 9(8):1754-1757.
  12. Lurton, X. (2010). An Introduction to Underwater Acoustics. Springer-Verlag, Berlin, 2nd edition.
  13. Nicolaou, N., See, A., Cui, J., and Maggiorini, D. (2007). Improving the robustness of location-based routing for underwater sensor networks. In Proceedings of the MTS/IEEE Oceans, pages 1-6, Vancouver (B.C.), Canada.
  14. Otnes, R., Asterjadhi, A., Casari, P., Goetz, M., Husoy, T., Nissen, I., Rimstad, K., van Walree, P., and Zorzi, M. (2012). Underwater Acoustic Networking Techniques. Springer.
  15. Perkins, C. and Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers. ACM SIGCOMM Comput. Cummun. Rev., 24(4):234-244.
  16. Porto, A. and Stojanovic, M. (2007). Optimizing the transmission range in an underwater acoustic network. In Proceedings of the MTS/IEEE Oceans. Vancouver (B.C.), Canada.
  17. Rice, J. and Ong, C. (2010). A discovery process for initializing underwater acoustic networks. In Proceedings of the Fourth International conference on Sensor Technologies and Applications, pages 408-415.
  18. Stojanovic, M. and Preisig, J. (2009). Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Communication Magazine, 47:84-89.
  19. Urick, R. J. (1983). Principles of Underwater Sound. McGraw Hill, 3rd edition.
  20. van Walree, P. (2013). Propagation effects in underwater acoustic communication channel. IEEE Journal of Oceanic Engineering, 38(4):614-631.
  21. Zorzi, M., Casari, P., Baldo, N., and Harris, A. (2008). Energy-efficient routing schemes for underwater acoustic networks. IEEE J. Selected Areas in Comm., 26(9):1754-1766.
  22. Kinsler, et al., Fourth Edition [19]
  23. Kinsler, et al., Third Edition [18] 103 Freque1n0c4y (Hz) 105
  24. Figure 8: Absorption coefficient (1 atm., 5oC).
Download


Paper Citation


in Harvard Style

Blouin S., Barbeau M. and Kranakis E. (2015). Refracted Acoustic Communications in Wireless Underwater Sensor Networks with Mobility . In Proceedings of the 4th International Conference on Sensor Networks - Volume 1: SENSORNETS, ISBN 978-989-758-086-4, pages 113-121. DOI: 10.5220/0005199501130121


in Bibtex Style

@conference{sensornets15,
author={S. Blouin and M. Barbeau and E. Kranakis},
title={Refracted Acoustic Communications in Wireless Underwater Sensor Networks with Mobility},
booktitle={Proceedings of the 4th International Conference on Sensor Networks - Volume 1: SENSORNETS,},
year={2015},
pages={113-121},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005199501130121},
isbn={978-989-758-086-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Conference on Sensor Networks - Volume 1: SENSORNETS,
TI - Refracted Acoustic Communications in Wireless Underwater Sensor Networks with Mobility
SN - 978-989-758-086-4
AU - Blouin S.
AU - Barbeau M.
AU - Kranakis E.
PY - 2015
SP - 113
EP - 121
DO - 10.5220/0005199501130121