Detection of Ruptures in Spatial Relationships in Video Sequences

Abdalbassir Abou-Elailah, Valerie Gouet-Brunet, Isabelle Bloch

2015

Abstract

The purpose of this work is to detect strong changes in spatial relationships between objects in video sequences, with a limited knowledge on the objects. First, a fuzzy representation of the objects is proposed based on low-level generic primitives. Furthermore, angle and distance histograms are used as examples to model the spatial relationships between two objects. Then, we estimate the distances between different angle or distance histograms during time. By analyzing the evolution of the spatial relationships during time, ruptures are detected in this evolution. Experimental results show that the proposed method can efficiently detect the ruptures in the spatial relationships, exploiting only low-level primitives. This constitutes a promising step towards event detection in videos, with few a priori models on the objects.

References

  1. Advisor (2000). http://www-sop.inria.fr/orion/ADVISOR/. Advisor Project.
  2. Avitrackr (2004). http://www-sop.inria.fr/members/ Francois.Bremond/topics Text/avitrackProject.html. Avitrackr Project.
  3. Beware (2007). http://www.eecs.qmul.ac.uk/~sgg/BEWA RE/ Beware Project.
  4. Caretaker (2006). http://www-sop.inria.fr/members/ Francois. Bremond/topics Text/caretakerProject.htm. Caretaker Project.
  5. Carroll, S. and Carroll, D. (2002). Statistics made simple for school leaders: data-driven decision making. R&L Education.
  6. Comanicu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603-619.
  7. Cong, Y., Yuan, J., and Liu, J. (2013a). Abnormal event detection in crowded scenes using sparse representation. Pattern Recognition, 46(7):1851 - 1864.
  8. Cong, Y., Yuan, J., and Tang, Y. (2013b). Video anomaly search in crowded scenes via spatio-temporal motion context. IEEE Transactions on Information Forensics and Security, 8(10):1590 - 1599.
  9. Eddy, W. (1982). Convex hull peeling. In COMPSTAT, pages 42-47.
  10. Etiseo (2004). http://www-sop.inria.fr/orion/ETISEO/.
  11. Garcia, D. (2010). Robust smoothing of gridded data in one and higher dimensions with missing values. Computational Statistics and Data Analysis, 54(4):1167 - 1178.
  12. Hafner, J., Sawhney, H., Equitz, W., Flickner, M., and Niblack, W. (1995). Efficient color histogram indexing for quadratic form distance functions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(7):729 - 736.
  13. Han, J., Kamber, M., and Pei, J. (2006). Data mining: concepts and techniques. Morgan kaufmann.
  14. Harris, C. and Stephens, M. (1988). A combined corner and edge detector. In Fourth Alvey Vision Conference, pages 147-151.
  15. Hu, X., Hu, S., Zhang, X., Zhang, H., and Luo, L. (2014). Anomaly detection based on local nearest neighbor distance descriptor in crowded scenes. The Scientific World Journal, 2014.
  16. Hugg, J., Rafalin, E., Seyboth, K., and Souvaine, D. (2006). An experimental study of old and new depth measures. In Workshop on Algorithm Engineering and Experiments (ALENEX), pages 51-64.
  17. Icons (2000). http://www.dcs.qmul.ac.uk/research/ vision/projects/ICONS/. Icons Project.
  18. Jiang, F., Wu, Y., and K.Katsaggelos, A. (2009). Detecting contextual anomalies of crowd motion in surveillance video. In 16th IEEE International Conference on Image Processing, pages 1117 - 1120.
  19. Liu, R. (1990). On a notion of data depth based on random simplices. The Annals of Statistics, 18(1):405-414.
  20. Loménie, N. and Stamon, G. (2008). Morphological mesh filtering and a-objects. Pattern Recognition Letters, 29(10):1571 - 1579.
  21. Lowe, D. G. (2004). Distinctive image features from scaleinvariant keypoints. International Journal of Computer Vision, 60(2):91 - 110.
  22. Mehran, R., Oyama, A., and Shah, M. (2009). Abnormal crowd behavior detection using social force model. In IEEE Conference on Computer Vision and Pattern Recognition, pages 935 - 942.
  23. Miyajima, K. and Ralescu, A. (1994). Spatial organization in 2D images. In Third IEEE Conference on Fuzzy Systems, pages 100-105.
  24. Pele, O. and Werman, M. (2010). The quadratic-chi histogram distance family. In European Conference on Computer Vision (ECCV), pages 749 - 762.
  25. PETS (2006). http://www.cvg.rdg.ac.uk/PETS2006/data. html.
  26. PETS (2009). http://www.cvg.rdg.ac.uk/PETS2009/a.html
  27. Piciarelli, C., Micheloni, C., and Foresti, G. (2008). Trajectory-based anomalous event detection. IEEE Transactions on Circuits and Systems for Video Technology, 18(11):1544 - 1554.
  28. Rubner, Y., Tomasi, C., and Guibas, L. (2000). The earth mover's distance as a metric for image retrieval. International Journal of Computer Vision, 40(2):99-121.
  29. Saleemi, I., Shafique, K., and Shah, M. (2009). Probabilistic modeling of scene dynamics for applications in visual surveillance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(8):1472 - 1485.
  30. Tissainayagam, P. and Suter, D. (2005). Object tracking in image sequences using point features. Pattern Recognition, 38(1):105 - 113.
  31. Tran, D., Yuan, J., and Forsyth, D. (2014). Video event detection: From subvolume localization to spatiotemporal path search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(2):404 - 416.
  32. Tukey, J. W. (1975). Mathematics and the picturing of data. In International Congress of Mathematicians, volume 2, pages 523-531.
  33. Vardi, Y. and Zhang, C.-H. (2000). The multivariate l1- median and associated data depth. National Academy of Sciences, 97(4):1423-1426.
  34. Visam (1997). http://www.cs.cmu.edu/~vsam/. Visam Project.
  35. Zhou, H., Yuan, Y., and Shi, C. (2009). Object tracking using sift features and mean shift. Computer Vision and Image Understanding, 113(3):345 - 352.
Download


Paper Citation


in Harvard Style

Abou-Elailah A., Gouet-Brunet V. and Bloch I. (2015). Detection of Ruptures in Spatial Relationships in Video Sequences . In Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-076-5, pages 110-120. DOI: 10.5220/0005213501100120


in Bibtex Style

@conference{icpram15,
author={Abdalbassir Abou-Elailah and Valerie Gouet-Brunet and Isabelle Bloch},
title={Detection of Ruptures in Spatial Relationships in Video Sequences},
booktitle={Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2015},
pages={110-120},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005213501100120},
isbn={978-989-758-076-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Detection of Ruptures in Spatial Relationships in Video Sequences
SN - 978-989-758-076-5
AU - Abou-Elailah A.
AU - Gouet-Brunet V.
AU - Bloch I.
PY - 2015
SP - 110
EP - 120
DO - 10.5220/0005213501100120