Spatio-temporal Comparison between ERD/ERS and MRCP-based Movement Prediction

Anett Seeland, Laura Manca, Frank Kirchner, Elsa Andrea Kirchner

2015

Abstract

In brain-computer interfaces (BCIs) based on electroencephalography (EEG), two distinct types of EEG patterns related to movement have been used for detecting the brain’s preparation for voluntary movements: a) event-related patterns in the time domain named movement related cortical potentials (MRCPs) and b) patterns in the frequency domain named event-related desynchronization/synchronization (ERD/ERS). The applicability of those patterns in BCIs is often evaluated by the classification performance. To this end, the known spatio-temporal differences in EEG activity can be of interest, since they might influence the classification performance of the two different patterns. In this paper, we compared the classification performance based on ERD/ERS and MRCP while varying the time point of prediction as well as the used electrode sites. Empirical results were obtained from eight subjects performing voluntary right arm movements. Results show: a) classification based on MRCP is superior compared to ERD/ERS close to the movement onset whereas the opposite results farther away from the movement onset, b) the performance maximum of MRCP is located at central electrodes whereas it is at fronto-central electrodes for ERD/ERS. In summary, the results contribute to a better insight into the spatial and temporal differences between ERD/ERS and MRCP in terms of prediction performance.

References

  1. Babiloni, C., Carducci, F., Cincotti, F., Rossini, P. M., Neuper, C., Pfurtscheller, G., and Babiloni, F. (1999). Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage, 10(6):658-65.
  2. Bai, O., Mari, Z., Vorbach, S., and Hallett, M. (2005). Asymmetric spatiotemporal patterns of event-related desynchronization preceding voluntary sequential finger movements: a high-resolution EEG study. Clin. Neurophysiol., 116(5):1213-1221.
  3. Bai, O., Rathi, V., Lin, P., and Huang, D. (2011). Prediction of human voluntary movement before it occurs. Clin. Neurophysiol., 122(2):364-372.
  4. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., and Müller, K.-R. (2008). Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine, pages 41-56.
  5. Cavanagh, P. R. and Komi, P. V. (1979). Electromechanical delay in human skeletal muscle under concentric and eccentric contractions. European Journal of Applied Physiology and Occupational Physiology, 42(3):159- 163.
  6. Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27. Software available at http://www.csie.ntu.edu.tw/ cjlin/libsvm.
  7. Deecke, L., Grözinger, B., and Kornhuber, H. H. (1976). Voluntary finger movement in man: Cerebral potentials and theory. Biol. Cybern., 23(2):99-119.
  8. Folgheraiter, M., Kirchner, E., and Seeland, A. (2011). A multimodal brain-arm interface for operation of complex robotic systems and upper limb motor recovery. In BIODEVICES 2011 - International Conference on Biomedical Electronics and Devices, pages 150-162.
  9. Ibanez, J., Serrano, J. I., del Castillo, M. D., MongePereira, E., Molina-Rueda, F., Alguacil-Diego, I., and Pons, J. L. (2014). Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials. Journal of Neural Engineering, 11(5):056009.
  10. Jiang, N., Gizzi, L., Mrachacz-Kersting, N., Dremstrup, K., and Farina, D. (2014). A brain-computer interface for single-trial detection of gait initiation from movement related cortical potentials. Clin Neurophysiol.
  11. Kirchner, E. A., Albiez, J., Seeland, A., Jordan, M., and Kirchner, F. (2013a). Towards assistive robotics for home rehabilitation. In Chimeno, M. F., Solé-Casals, J., Fred, A., and Gamboa, H., editors, Proceedings of the 6th International Conference on Biomedical Electronics and Devices (BIODEVICES-13), pages 168- 177, Barcelona. ScitePress.
  12. Kirchner, E. A., Kim, S. K., Straube, S., Seeland, A., Wöhrle, H., Krell, M. M., Tabie, M., and Fahle, M. (2013b). On the applicability of brain reading for predictive human-machine interfaces in robotics. PLoS ONE, 8(12):e81732.
  13. Krell, M. M., Straube, S., Seeland, A., Wöhrle, H., Teiwes, J., Metzen, J. H., Kirchner, E. A., and Kirchner, F. (2013). pySPACE - a signal processing and classification environment in Python. Frontiers in Neuroinformatics, 7(40). https://github.com/pyspace.
  14. Leocani, L., Toro, C., Zhuang, P., Gerloff, C., and Hallett, M. (2001). Event-related desynchronization in reaction time paradigms: a comparison with event-related potentials and corticospinal excitability. Clin. Neurophysiol., 112(5):923-30.
  15. Lew, E., Chavarriaga, R., Silvoni, S., and Millán, J. D. R. (2012). Detection of self-paced reaching movement intention from EEG signals. Front. Neuroeng., 5:13.
  16. Li, Y., Gao, X., Liu, H., and Gao, S. (2004). Classification of single-trial electroencephalogram during finger movement. IEEE Trans. Biomed. Eng., 51(6):1019- 1025.
  17. Liao, X., Yao, D., Wu, D., and Li, C. (2007). Combining spatial filters for the classification of single-trial EEG in a finger movement task. IEEE Trans. on Bio-med. Eng., 54(5):821-31.
  18. Morash, V., Bai, O., Furlani, S., Lin, P., and Hallett, M. (2008). Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries. Clin. Neurophysiol., 119(11):2570-2578.
  19. Müller-Gerking, J., Pfurtscheller, G., and Flyvbjerg, H. (1999). Designing optimal spatial filters for singletrial EEG classification in a movement task. Clin. Neurophysiol., 110(5):787-798.
  20. Niazi, I. K., Jiang, N., Tiberghien, O., Nielsen, J. r. F. k., Dremstrup, K., and Farina, D. (2011). Detection of movement intention from single-trial movementrelated cortical potentials. J Neural Eng, 8(6).
  21. Nikolic, M. and Krarup, C. (2011). EMGTools, an adaptive and versatile tool for detailed EMG analysis. Biomedical Engineering, IEEE Transactions on, 58(10):2707 -2718.
  22. Paradiso, G., Cunic, D., Saint-Cyr, J. a., Hoque, T., Lozano, A. M., Lang, A. E., and Chen, R. (2004). Involvement of human thalamus in the preparation of selfpaced movement. Brain, 127(Pt 12):2717-2731.
  23. Pfurtscheller, G. (1981). Central beta rythm during sensorimotor activities in man. Electroencephalogr. Clin. Neurophysiol., 51(3535):253-264.
  24. Pfurtscheller, G. and Berghold, a. (1989). Patterns of cortical activation during planning of voluntary movement. Electroencephalogr. Clin. Neurophysiol., 72(3):250- 258.
  25. Pfurtscheller, G. and Lopes da Silva, F. H. (1999). Eventrelated EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol., 110(11):1842-1857.
  26. Pfurtscheller, G. and Neuper, C. (1992). Simultaneous EEG 10Hz desynchronization and 40 Hz synchronization during finger movements. Neuroreport, 3:1057-1060.
  27. Pfurtscheller, G., Neuper, C., and Kalcher, J. (1993). 40-Hz oscillations during motor behavior in man. Neurosci. Lett., 164(1-2):179-182.
  28. Rivet, B., Souloumiac, A., Attina, V., and Gibert, G. (2009). xDAWN algorithm to enhance evoked potentials: application to brain-computer interface. IEEE Trans. on Bio-med. Eng., 56(8):2035-2043.
  29. Santucci, E. and Balconi, M. (2009). The multicomponential nature of movement-related cortical potentials: functional generators and psychological factors. Neuropsychol. Trends.
  30. Seeland, A., Woehrle, H., Straube, S., Kirchner, E. A., and Wöhrle, H. (2013). Online Movement Prediction in a Robotic Application Scenario. In Proc. 6th Int. IEEE EMBS Conf. Neural Eng., pages 41-44, San Diego.
  31. Shibasaki, H. and Hallett, M. (2006). What is the Bereitschaftspotential? Clin. Neurophysiol., 117(11):2341-2356.
  32. Stancák, A., Feige, B., Lücking, C. H., and Kristeva-Feige, R. (2000). Oscillatory cortical activity and movementrelated potentials in proximal and distal movements. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology, 111(4):636-50.
  33. Straube, S. and Krell, M. M. (2014). How to evaluate an agent's behaviour to infrequent events? - reliable performance estimation insensitive to class distribution. Frontiers in Computational Neuroscience, 8(43).
  34. Tabie, M. and Kirchner, E. A. (2013). EMG onset detection - comparison of different methods for a movement prediction task based on EMG. In Alvarez, S., Solé-Casals, J., Fred, A., and Gamboa, H., editors, In Proceedings of the 6th International Conference on Bio-inspired Systems and Signal Processing (BIOSIGNALS-13), pages 242-247, Barcelona. SciTePress.
  35. Wang, B. and Wan, F. (2009). Classification of Single-Trial EEG based on support vector clustering during finger movement. Adv. Neural NetworksISNN 2009, pages 354-363.
  36. Wang, Y., Zhang, Z., Li, Y., Gao, X., Gao, S., and Yang, F. (2004). BCI Competition 2003-Data set IV: an algorithm based on CSSD and FDA for classifying singletrial EEG. IEEE Trans. Biomed. Eng., 51(6):1081-6.
  37. Zhou, S., Lawson, D. L., Morrison, W. E., and Fairweather, I. (1995). Electromechanical delay in isometric muscle contractions evoked by voluntary, reflex and electrical stimulation. European Journal of Applied Physiology and Occupational Physiology, 70(2):138-145.
Download


Paper Citation


in Harvard Style

Seeland A., Manca L., Kirchner F. and Kirchner E. (2015). Spatio-temporal Comparison between ERD/ERS and MRCP-based Movement Prediction . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015) ISBN 978-989-758-069-7, pages 219-226. DOI: 10.5220/0005214002190226


in Bibtex Style

@conference{biosignals15,
author={Anett Seeland and Laura Manca and Frank Kirchner and Elsa Andrea Kirchner},
title={Spatio-temporal Comparison between ERD/ERS and MRCP-based Movement Prediction},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)},
year={2015},
pages={219-226},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005214002190226},
isbn={978-989-758-069-7},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2015)
TI - Spatio-temporal Comparison between ERD/ERS and MRCP-based Movement Prediction
SN - 978-989-758-069-7
AU - Seeland A.
AU - Manca L.
AU - Kirchner F.
AU - Kirchner E.
PY - 2015
SP - 219
EP - 226
DO - 10.5220/0005214002190226