Mathematical Model of a Human Leg - The Switched Linear System Approach
Artur Babiarz, Adam Czornik, Michal Niezabitowski, Radoslaw Zawiski
2015
Abstract
This article presents a novel approach to modelling of the human leg with the use of linear switched systems. Second order differential equations forming a two-segments leg model moving in a vertical plane are shown. State space linear equations describing given model are derived. A linear switched system for such model is presented, where the switching function is modelled as state-dependent. Based on this approach a linear system is presented, which is composed of four subsystems between which switching occurs depending on two state variables. These variables represent angular displacements. As a consequence, a state space division is shown together with a linear system describing human leg in this setting. Finally, a set of simulations presents differences between standard linear modelling approach and a switched linear system approach.
References
- Burdet, E., Tee, K. P., Mareels, I., Milner, T. E., Chew, C.- M., Franklin, D. W., Osu, R., and Kawato, M. (2006). Stability and motor adaptation in human arm movements. Biological cybernetics, 94(1):20-32.
- Chang, P. H., Park, K., Kang, S. H., Krebs, H. I., and Hogan, N. (2013). Stochastic estimation of human arm impedance using robots with nonlinear frictions: An experimental validation. Mechatronics, IEEE/ASME Transactions on, 18(2):775-786.
- Chen, K. (2011). Modeling of equilibrium point trajectory control in human arm movements. PhD thesis, New Jersey Institute of Technology.
- Csercsik, D. (2005). Analysis and control of a simple nonlinear limb model. PhD thesis, University of Technology.
- Czornik, A. and Niezabitowski, M. (2013). Controllability and stability of switched systems. In Methods and Models in Automation and Robotics (MMAR), 2013 18th International Conference on, pages 16-21.
- Czornik, A. and S wierniak, A. (2004). On direct controllability of discrete time jump linear system. Journal of the Franklin Institute, 341(6):491-503.
- Czornik, A. and Swierniak, A. (2005). Controllability of discrete time jump linear systems. Dynamics of Continuous Discrete and Impulsive Systems-Series BApplications & Algorithms, 12(2):165 - 189.
- HosseinNia, S. H., Tejado, I., and Vinagre, B. M. (2013). Stability of fractional order switching systems. Computers & Mathematics with Applications, 66(5):585- 596.
- Kaczorek, T. (2013). Stability of positive fractional switched continuous-time linear systems. Bulletin of the Polish Academy of Sciences. Technical Sciences, Vol. 61(2):349-352.
- Klamka, J., Czornik, A., and Niezabitowski, M. (2013). Stability and controllability of switched systems. Bulletin of the Polish Academy of Sciences. Technical Sciences, 61:547-555.
- Klamka, J., Czornik, A., Niezabitowski, M., and Babiarz, A. (2014). Controllability and minimum energy control of linear fractional discrete-time infinitedimensional systems. In 11th IEEE International Conference on Control and Automation, pages 1210- 1214. IEEE.
- Klamka, J. and Niezabitowski, M. (2013). Controllability of switched linear dynamical systems. In Methods and Models in Automation and Robotics (MMAR), 2013 18th International Conference on, pages 464-467.
- Klamka, J. and Niezabitowski, M. (2014). Controllability of switched infinite-dimensional linear dynamical systems. In Methods and Models in Automation and Robotics (MMAR), 2014 19th International Conference on, pages 171-175.
- Kong, K. and Tomizuka, M. (2009). Control of exoskeletons inspired by fictitious gain in human model. Mechatronics, IEEE/ASME Transactions on, 14(6):689-698.
- Lee, D., Glueck, M., et al. (2010). A survey of modeling and simulation of skeletal muscle. ACM Transactions on Graphics, 28(4):162.
- Liberzon, D. (2003). Switching in systems and control. Springer.
- Neumann, T., Varanasi, K., Hasler, N., Wacker, M., Magnor, M., and Theobalt, C. (2013). Capture and statistical modeling of arm-muscle deformations. In Computer Graphics Forum, volume 32, pages 285-294. Wiley Online Library.
- Pavlovic, V., Rehg, J. M., and MacCormick, J. (2001). Learning switching linear models of human motion. In Leen, T., Dietterich, T., and Tresp, V., editors, Advances in Neural Information Processing Systems 13, pages 981-987. MIT Press.
- Pons, J., Moreno, J., Brunetti, F., and Rocon, E. (2007). Lower-Limb Wearable Exoskeleton In Rehabilitation Robotics. Monografie - Komitet Automatyki i Robotyki P. I-Tech Education and Publishing.
- Sekine, M., Sugimori, K., Gonzalez, J., and Yu, W. (2013). Optimization-Based Design of a Small PneumaticActuator-Driven Parallel Mechanism for a Shoulder Prosthetic Arm with Statics and Spatial Accessibility. Evaluation. International Journal of Advanced Robotic Systems, 286(10).
- Shorten, R. (2007). On Quadratic Stability of Statedependent Planar Switching Systems. Forschungsberichte der Fakultät IV - Elektrotechnik und Informatik // Technische Universität Berlin. Techn. Univ., Fak. IV, Elektrotechnik und Informatik.
- Sun, Z. (2006). Switched linear systems: Control and Design. Springer.
- Sun, Z. and Ge, S. S. (2011). Stability theory of switched dynamical systems. Springer.
- Tejado, I., Valério, D., Pires, P., and J., M. (2013a). Optimal Feedback Control for Predicting Dynamic Stiffness During Arm Movement. Mechatronics, 23(7):805- 812.
- Tejado, I., Valrio, D., Pires, P., and Martins, J. (2013b). Fractional order human arm dynamics with variability analyses. Mechatronics, 23(7):805-812.
- Ueyama, Y. and Miyashita, E. (2014). Optimal Feedback Control for Predicting Dynamic Stiffness During Arm Movement. Industrial Electronics, IEEE Transactions on, 61(2):1044-1052.
- Zawiski, R. and Blachuta, M. (2012). Model development and optimal control of quadrotor aerial robot. In Methods and Models in Automation and Robotics (MMAR), 2012 17th International Conference on, pages 475- 480.
- Zhao, Y., Xu, C., Luo, Y., and Wang, Y. (2008). Design, modeling and simulation of the human lower extremity exoskeleton. In Control and Decision Conference, 2008. CCDC 2008. Chinese, pages 3335-3339. IEEE.
Paper Citation
in Harvard Style
Babiarz A., Czornik A., Niezabitowski M. and Zawiski R. (2015). Mathematical Model of a Human Leg - The Switched Linear System Approach . In Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: PECCS, ISBN 978-989-758-084-0, pages 90-97. DOI: 10.5220/0005230300900097
in Bibtex Style
@conference{peccs15,
author={Artur Babiarz and Adam Czornik and Michal Niezabitowski and Radoslaw Zawiski},
title={Mathematical Model of a Human Leg - The Switched Linear System Approach},
booktitle={Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: PECCS,},
year={2015},
pages={90-97},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005230300900097},
isbn={978-989-758-084-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 5th International Conference on Pervasive and Embedded Computing and Communication Systems - Volume 1: PECCS,
TI - Mathematical Model of a Human Leg - The Switched Linear System Approach
SN - 978-989-758-084-0
AU - Babiarz A.
AU - Czornik A.
AU - Niezabitowski M.
AU - Zawiski R.
PY - 2015
SP - 90
EP - 97
DO - 10.5220/0005230300900097