Quality Assessment of Fingerprints with Minutiae Delaunay Triangulation

Z. Yao, J. Le Bars, C. Charrier, C. Rosenberger

2015

Abstract

This article proposes a new quality assessment method of fingerprint, represented by only a set of minutiae points. The proposed quality metric is modeled with the convex-hull and Delaunay triangulation of the minutiae points. The validity of this quality metric is verified on several Fingerprint Verification Competition (FVC) databases by referring to an image-based metric from the state of the art (considered as the reference). The experiments of the utility-based evaluation approach demonstrate that the proposed quality metric is able to generate a desired result. We reveal the possibility of assessing fingerprint quality when only the minutiae template is available.

References

  1. Alonso-Fernandez, F., Fierrez, J., Ortega-Garcia, J., Gonzalez-Rodriguez, J., Fronthaler, H., Kollreider, K., and Bigun, J. (2007). A comparative study of fingerprint image-quality estimation methods. Information Forensics and Security, IEEE Transactions on, 2(4):734-743.
  2. Andrew, A. M. (1979). Another efficient algorithm for convex hulls in two dimensions. Information Processing Letters, 9(5):216-219.
  3. Aufmann, R., Barker, V., and Nation, R. (2007). College Trigonometry. Cengage Learning.
  4. Bolle, R. M., Pankanti, S. U., and Yao, Y.-S. (1999). System and method for determining the quality of fingerprint images. US Patent 5,963,656.
  5. Chen, T., Jiang, X., and Yau, W. (2004). Fingerprint image quality analysis. In Image Processing, 2004. ICIP 7804. 2004 International Conference on, volume 2, pages 1253-1256 Vol.2.
  6. Delaunay, B. (1934). Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7(793-800):1-2.
  7. Feng, J. and Jain, A. K. (2011). Fingerprint reconstruction: from minutiae to phase. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(2):209-223.
  8. Giot, R., El-Abed, M., and Rosenberger, C. (2013). Fast computation of the performance evaluation of biometric systems: Application to multibiometrics. Future Gener. Comput. Syst., 29(3):788-799.
  9. Grother, P. and Tabassi, E. (2007). Performance of biometric quality measures. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 29(4):531-543.
  10. Lee, B., Moon, J., and Kim, H. (2005). A novel measure of fingerprint image quality using the Fourier spectrum. In Jain, A. K. and Ratha, N. K., editors, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 5779 of Society of PhotoOptical Instrumentation Engineers (SPIE) Conference Series, pages 105-112.
  11. Lim, E., Jiang, X., and Yau, W. (2002). Fingerprint quality and validity analysis. In Image Processing. 2002. Proceedings. 2002 International Conference on, volume 1, pages I-469-I-472 vol.1.
  12. Maio, D., Maltoni, D., Cappelli, R., Wayman, J. L., and J., A. K. (2004). Fvc2004: Third fingerprint verification competition. In Biometric Authentication, pages 1-7. Springer.
  13. Maltoni, D., Maio, D., Jain, A. K., and Prabhakar, S. (2009). Handbook of fingerprint recognition. Springer.
  14. Nanni, L. and Lumini, A. (2007). A hybrid waveletbased fingerprint matcher. Pattern Recognition, 40(11):3146-3151.
  15. Olsen, M., Xu, H., and Busch, C. (2012). Gabor filters as candidate quality measure for NFIQ 2.0. In Biometrics (ICB), 2012 5th IAPR International Conference on, pages 158-163.
  16. Ratha, N. K. and Bolle, R. (1999). Fingerprint image quality estimation. IBM TJ Watson Research Center.
  17. Staff, B. S. I. (2009). Information Technology. Biometric Sample Quality. Framework. B S I Standards.
  18. Tabassi, E., Wilson, C., and Watson, C. (2004). NIST fingerprint image quality. NIST Res. Rep. NISTIR7151.
  19. Watson, C. I., Garris, M. D., Tabassi, E., Wilson, C. L., Mccabe, R. M., Janet, S., and Ko, K. (2007). User's guide to nist biometric image software (nbis).
  20. Yao, Z., Charrier, C., and Rosenberger, C. (2014). Utility validation of a new fingerprint quality metric. In International Biometric Performance Conference 2014. National Insititute of Standard and Technology (NIST).
  21. Zhao, Q., Liu, F., and Zhang, D. (2010). A comparative study on quality assessment of high resolution fingerprint images. In Image Processing (ICIP), 2010 17th IEEE International Conference on, pages 3089-3092. IEEE.
Download


Paper Citation


in Harvard Style

Yao Z., Le Bars J., Charrier C. and Rosenberger C. (2015). Quality Assessment of Fingerprints with Minutiae Delaunay Triangulation . In Proceedings of the 1st International Conference on Information Systems Security and Privacy - Volume 1: ICISSP, ISBN 978-989-758-081-9, pages 315-321. DOI: 10.5220/0005235603150321


in Bibtex Style

@conference{icissp15,
author={Z. Yao and J. Le Bars and C. Charrier and C. Rosenberger},
title={Quality Assessment of Fingerprints with Minutiae Delaunay Triangulation},
booktitle={Proceedings of the 1st International Conference on Information Systems Security and Privacy - Volume 1: ICISSP,},
year={2015},
pages={315-321},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005235603150321},
isbn={978-989-758-081-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Information Systems Security and Privacy - Volume 1: ICISSP,
TI - Quality Assessment of Fingerprints with Minutiae Delaunay Triangulation
SN - 978-989-758-081-9
AU - Yao Z.
AU - Le Bars J.
AU - Charrier C.
AU - Rosenberger C.
PY - 2015
SP - 315
EP - 321
DO - 10.5220/0005235603150321