Adaptive Segmentation based on a Learned Quality Metric
Iuri Frosio, Ed R. Ratner
2015
Abstract
We introduce here a model for the evaluation of the segmentation quality of a color image. The model parameters were learned from a set of examples. To this aim, we first segmented a set of images using a traditional graph-cut algorithm, for different values of the scale parameter. A human observer classified these images into three classes: under-, well- and over-segmented. This classification was employed to learn the parameters of the segmentation quality model. This was used to automatically optimize the scale parameter of the graph-cut segmentation algorithm, even at a local scale. Experimental results show an improved segmentation quality for the adaptive algorithm based on our segmentation quality model, which can be easily applied to a wide class of segmentation algorithms.
References
- R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC Superpixels Compared to State-ofthe-art Superpixel Methods, IEEE TPAMI, 2012.
- S. Alpert, M. Galun; A. Brandt, R. Basri, Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration, IEEE TPAMI, 2012.
- A. Beghdad, S. Souidene, An HVS-inspired approach for image segmentation evaluation, IEEE ISSPA, 2007.
- M. Bosch, Z. Fengqing, E. J. Delp, Segmentation-Based Video Compression Using Texture and Motion Models, IEEE Journ. Sel. Topics in Sig. Proc., 2011.
- J. Canny, A Computational Approach to Edge Detection, IEEE TPAMI, 1986.
- S. Chabrier, B. Emile, H. Laurent, C. Rosenberger, P. Marché, Unsupervised Evaluation of Image Segmentation: Application to multi-spectral images, ICPR, 2004.
- P. F. Felzenszwalb, D. P. Huttenlocher, Efficient GraphBased Image Segmentation, IJCV, 2004.
- E. D. Gelasca, et al., Towards Perceptually Driven Segmentation Evaluation Metrics, in CVPRW, 2004.
- I. Frosio, G. Ferrigno, N. A. Borghese, Enhancing Digital Cephalic Radiography with Mixture Model and Local Gamma Correction, IEEE TMI, 2006.
- J. Kaufhold, and A. Hoogs, Learning to segment images using region-based perceptual features, in CVPR, 2004.
- N. A. M. Isa, S. A. Salamah, U. K. Ngah, Adaptive fuzzy moving K-means clustering algorithm for image segmentation, IEEE TCE, 2009.
- D. Martin, C. Fowlkes, D. Tal, J. Malik, A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics, ICCV, 2001.
- A. Prakash, E. R. Ratner, J. S. Chen, D. L. Cook. Method and apparatus for digital image segmentation. U.S. Patent 6,778,698, 2004.
- R. Raina, A. Madhavan, A. Y. Ng., Large-scale deep unsupervised learning using graphics processors, ICML, 2009.
- N. Senthilkumaran, R. Rajesh, Edge detection techniques for image segmentation-a survey of soft computing approaches, Int. Journ. Recent Trends in Eng., 2009.
- J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis, 2004.
- S. Sun, M. Sonka, R. R. Beichel, Graph-Based IVUS Segmentation With Efficient Computer-Aided Refinement, IEEE TMI, 2013.
- K. Sungwoong, S. Nowozin, P. Kohli, C. D. Yoo, TaskSpecific Image Partitioning, IEEE TIP, 2013.
- I. H. Witten, F. Eibe, Data Mining: Practical Machine Learning Tools and Techniques, 2002.
Paper Citation
in Harvard Style
Frosio I. and Ratner E. (2015). Adaptive Segmentation based on a Learned Quality Metric . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 283-292. DOI: 10.5220/0005257202830292
in Bibtex Style
@conference{visapp15,
author={Iuri Frosio and Ed R. Ratner},
title={Adaptive Segmentation based on a Learned Quality Metric},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={283-292},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005257202830292},
isbn={978-989-758-089-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - Adaptive Segmentation based on a Learned Quality Metric
SN - 978-989-758-089-5
AU - Frosio I.
AU - Ratner E.
PY - 2015
SP - 283
EP - 292
DO - 10.5220/0005257202830292