Adaptive Segmentation based on a Learned Quality Metric

Iuri Frosio, Ed R. Ratner

2015

Abstract

We introduce here a model for the evaluation of the segmentation quality of a color image. The model parameters were learned from a set of examples. To this aim, we first segmented a set of images using a traditional graph-cut algorithm, for different values of the scale parameter. A human observer classified these images into three classes: under-, well- and over-segmented. This classification was employed to learn the parameters of the segmentation quality model. This was used to automatically optimize the scale parameter of the graph-cut segmentation algorithm, even at a local scale. Experimental results show an improved segmentation quality for the adaptive algorithm based on our segmentation quality model, which can be easily applied to a wide class of segmentation algorithms.

References

  1. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC Superpixels Compared to State-ofthe-art Superpixel Methods, IEEE TPAMI, 2012.
  2. S. Alpert, M. Galun; A. Brandt, R. Basri, Image Segmentation by Probabilistic Bottom-Up Aggregation and Cue Integration, IEEE TPAMI, 2012.
  3. A. Beghdad, S. Souidene, An HVS-inspired approach for image segmentation evaluation, IEEE ISSPA, 2007.
  4. M. Bosch, Z. Fengqing, E. J. Delp, Segmentation-Based Video Compression Using Texture and Motion Models, IEEE Journ. Sel. Topics in Sig. Proc., 2011.
  5. J. Canny, A Computational Approach to Edge Detection, IEEE TPAMI, 1986.
  6. S. Chabrier, B. Emile, H. Laurent, C. Rosenberger, P. Marché, Unsupervised Evaluation of Image Segmentation: Application to multi-spectral images, ICPR, 2004.
  7. P. F. Felzenszwalb, D. P. Huttenlocher, Efficient GraphBased Image Segmentation, IJCV, 2004.
  8. E. D. Gelasca, et al., Towards Perceptually Driven Segmentation Evaluation Metrics, in CVPRW, 2004.
  9. I. Frosio, G. Ferrigno, N. A. Borghese, Enhancing Digital Cephalic Radiography with Mixture Model and Local Gamma Correction, IEEE TMI, 2006.
  10. J. Kaufhold, and A. Hoogs, Learning to segment images using region-based perceptual features, in CVPR, 2004.
  11. N. A. M. Isa, S. A. Salamah, U. K. Ngah, Adaptive fuzzy moving K-means clustering algorithm for image segmentation, IEEE TCE, 2009.
  12. D. Martin, C. Fowlkes, D. Tal, J. Malik, A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics, ICCV, 2001.
  13. A. Prakash, E. R. Ratner, J. S. Chen, D. L. Cook. Method and apparatus for digital image segmentation. U.S. Patent 6,778,698, 2004.
  14. R. Raina, A. Madhavan, A. Y. Ng., Large-scale deep unsupervised learning using graphics processors, ICML, 2009.
  15. N. Senthilkumaran, R. Rajesh, Edge detection techniques for image segmentation-a survey of soft computing approaches, Int. Journ. Recent Trends in Eng., 2009.
  16. J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis, 2004.
  17. S. Sun, M. Sonka, R. R. Beichel, Graph-Based IVUS Segmentation With Efficient Computer-Aided Refinement, IEEE TMI, 2013.
  18. K. Sungwoong, S. Nowozin, P. Kohli, C. D. Yoo, TaskSpecific Image Partitioning, IEEE TIP, 2013.
  19. I. H. Witten, F. Eibe, Data Mining: Practical Machine Learning Tools and Techniques, 2002.
Download


Paper Citation


in Harvard Style

Frosio I. and Ratner E. (2015). Adaptive Segmentation based on a Learned Quality Metric . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 283-292. DOI: 10.5220/0005257202830292


in Bibtex Style

@conference{visapp15,
author={Iuri Frosio and Ed R. Ratner},
title={Adaptive Segmentation based on a Learned Quality Metric},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={283-292},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005257202830292},
isbn={978-989-758-089-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - Adaptive Segmentation based on a Learned Quality Metric
SN - 978-989-758-089-5
AU - Frosio I.
AU - Ratner E.
PY - 2015
SP - 283
EP - 292
DO - 10.5220/0005257202830292