Performance Evaluation of Bit-plane Slicing based Stereo Matching Techniques
Chung-Chien Kao, Huei-Yung Lin
2015
Abstract
In this paper, we propose a hierarchical framework for stereo matching. Similar to the conventional image pyramids, a series of images with less and less information is constructed. The objective is to use bit-plane slicing technique to investigate the feasibility of correspondence matching with less bits of intensity information. In the experiments, stereo matching with various bit-rate image pairs are carried out using graph cut, semi-global matching, and non-local aggregation methods. The results are submitted to Middlebury stereo page for performance evaluation.
References
- Akhavan, T., Yoo, H., and Gelautz, M. (2013). A framework for hdr stereo matching using multi-exposed images. In Proceedings of HDRi2013 - First International Conference and SME Workshop on HDR imaging (2013).
- Brown, M. Z., Burschka, D., and Hager, G. D. (2003). Advances in computational stereo. IEEE Trans. Pattern Anal. Mach. Intell., 25(8):993-1008.
- Chen, Y.-S., Hung, Y.-P., and Fuh, C.-S. (2001). Fast block matching algorithm based on the winner-update strategy. IEEE Transactions on Image Processing, 10(8):1212 -1222.
- Gong, M. and Yang, Y.-H. (2001). Multi-resolution stereo matching using genetic algorithm. In SMBV 7801: Proceedings of the IEEE Workshop on Stereo and MultiBaseline Vision (SMBV'01), page 21.
- Hirschmuller, H. (2008). Stereo processing by semiglobal matching and mutual information. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(2):328-341.
- Hirschmuller, H. and Scharstein, D. (2007). Evaluation of cost functions for stereo matching. In Computer Vision and Pattern Recognition, 2007. CVPR 7807. IEEE Conference on, pages 1-8.
- Humenberger, M., Zinner, C., Weber, M., Kubinger, W., and Vincze, M. (2010). A fast stereo matching algorithm suitable for embedded real-time systems. Computer Vision and Image Understanding, 114(11):1180 - 1202. Special issue on Embedded Vision.
- Kolmogorov, V. and Zabin, R. (2004). What energy functions can be minimized via graph cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(2):147-159.
- Konolige, K. (1997). Small vision systems: hardware and implementation. In Eighth International Symposium on Robotics Research, page 111-116.
- Lin, H.-Y. and Chou, X.-H. (2012). Stereo matching on low intensity quantization images. In Pattern Recognition (ICPR), 2012 21st International Conference on, pages 2618-2621.
- Lin, H.-Y. and Lin, P.-Z. (2013). Hierarchical stereo matching with image bit-plane slicing. Mach. Vision Appl., 24(5):883-898.
- Lu, J., Rogmans, S., Lafruit, G., and Catthoor, F. (2009). Stream-centric stereo matching and view synthesis: A high-speed approach on gpus. IEEE Transactions on Circuits and Systems for Video Technology, 19(11):1598 -1611.
- Min, D. and Sohn, K. (2008). Cost aggregation and occlusion handling with wls in stereo matching. IEEE Transactions on Image Processing, 17(8):1431 -1442.
- Scharstein, D. and Szeliski, R. (2002a). Middlebury stereo vision page. http://vision.middlebury.edu/stereo.
- Scharstein, D. and Szeliski, R. (2002b). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision, 47(1-3):7-42.
- Scharstein, D. and Szeliski, R. (2003). High-accuracy stereo depth maps using structured light. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 1, pages I-195-I-202 vol.1.
- Sun, J., Zheng, N.-N., and Shum, H.-Y. (2003). Stereo matching using belief propagation. IEEE Trans. Pattern Anal. Mach. Intell., 25(7):787-800.
- Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., and Rother, C. (2008). A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell., 30(6):1068-1080.
- Yang, Q. (2012). A non-local cost aggregation method for stereo matching. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1402-1409.
Paper Citation
in Harvard Style
Kao C. and Lin H. (2015). Performance Evaluation of Bit-plane Slicing based Stereo Matching Techniques . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 365-370. DOI: 10.5220/0005260203650370
in Bibtex Style
@conference{visapp15,
author={Chung-Chien Kao and Huei-Yung Lin},
title={Performance Evaluation of Bit-plane Slicing based Stereo Matching Techniques},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={365-370},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005260203650370},
isbn={978-989-758-089-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - Performance Evaluation of Bit-plane Slicing based Stereo Matching Techniques
SN - 978-989-758-089-5
AU - Kao C.
AU - Lin H.
PY - 2015
SP - 365
EP - 370
DO - 10.5220/0005260203650370