Performance Evaluation of Bit-plane Slicing based Stereo Matching Techniques

Chung-Chien Kao, Huei-Yung Lin

2015

Abstract

In this paper, we propose a hierarchical framework for stereo matching. Similar to the conventional image pyramids, a series of images with less and less information is constructed. The objective is to use bit-plane slicing technique to investigate the feasibility of correspondence matching with less bits of intensity information. In the experiments, stereo matching with various bit-rate image pairs are carried out using graph cut, semi-global matching, and non-local aggregation methods. The results are submitted to Middlebury stereo page for performance evaluation.

References

  1. Akhavan, T., Yoo, H., and Gelautz, M. (2013). A framework for hdr stereo matching using multi-exposed images. In Proceedings of HDRi2013 - First International Conference and SME Workshop on HDR imaging (2013).
  2. Brown, M. Z., Burschka, D., and Hager, G. D. (2003). Advances in computational stereo. IEEE Trans. Pattern Anal. Mach. Intell., 25(8):993-1008.
  3. Chen, Y.-S., Hung, Y.-P., and Fuh, C.-S. (2001). Fast block matching algorithm based on the winner-update strategy. IEEE Transactions on Image Processing, 10(8):1212 -1222.
  4. Gong, M. and Yang, Y.-H. (2001). Multi-resolution stereo matching using genetic algorithm. In SMBV 7801: Proceedings of the IEEE Workshop on Stereo and MultiBaseline Vision (SMBV'01), page 21.
  5. Hirschmuller, H. (2008). Stereo processing by semiglobal matching and mutual information. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 30(2):328-341.
  6. Hirschmuller, H. and Scharstein, D. (2007). Evaluation of cost functions for stereo matching. In Computer Vision and Pattern Recognition, 2007. CVPR 7807. IEEE Conference on, pages 1-8.
  7. Humenberger, M., Zinner, C., Weber, M., Kubinger, W., and Vincze, M. (2010). A fast stereo matching algorithm suitable for embedded real-time systems. Computer Vision and Image Understanding, 114(11):1180 - 1202. Special issue on Embedded Vision.
  8. Kolmogorov, V. and Zabin, R. (2004). What energy functions can be minimized via graph cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(2):147-159.
  9. Konolige, K. (1997). Small vision systems: hardware and implementation. In Eighth International Symposium on Robotics Research, page 111-116.
  10. Lin, H.-Y. and Chou, X.-H. (2012). Stereo matching on low intensity quantization images. In Pattern Recognition (ICPR), 2012 21st International Conference on, pages 2618-2621.
  11. Lin, H.-Y. and Lin, P.-Z. (2013). Hierarchical stereo matching with image bit-plane slicing. Mach. Vision Appl., 24(5):883-898.
  12. Lu, J., Rogmans, S., Lafruit, G., and Catthoor, F. (2009). Stream-centric stereo matching and view synthesis: A high-speed approach on gpus. IEEE Transactions on Circuits and Systems for Video Technology, 19(11):1598 -1611.
  13. Min, D. and Sohn, K. (2008). Cost aggregation and occlusion handling with wls in stereo matching. IEEE Transactions on Image Processing, 17(8):1431 -1442.
  14. Scharstein, D. and Szeliski, R. (2002a). Middlebury stereo vision page. http://vision.middlebury.edu/stereo.
  15. Scharstein, D. and Szeliski, R. (2002b). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vision, 47(1-3):7-42.
  16. Scharstein, D. and Szeliski, R. (2003). High-accuracy stereo depth maps using structured light. In Computer Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 1, pages I-195-I-202 vol.1.
  17. Sun, J., Zheng, N.-N., and Shum, H.-Y. (2003). Stereo matching using belief propagation. IEEE Trans. Pattern Anal. Mach. Intell., 25(7):787-800.
  18. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M., and Rother, C. (2008). A comparative study of energy minimization methods for markov random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach. Intell., 30(6):1068-1080.
  19. Yang, Q. (2012). A non-local cost aggregation method for stereo matching. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1402-1409.
Download


Paper Citation


in Harvard Style

Kao C. and Lin H. (2015). Performance Evaluation of Bit-plane Slicing based Stereo Matching Techniques . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 365-370. DOI: 10.5220/0005260203650370


in Bibtex Style

@conference{visapp15,
author={Chung-Chien Kao and Huei-Yung Lin},
title={Performance Evaluation of Bit-plane Slicing based Stereo Matching Techniques},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={365-370},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005260203650370},
isbn={978-989-758-089-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - Performance Evaluation of Bit-plane Slicing based Stereo Matching Techniques
SN - 978-989-758-089-5
AU - Kao C.
AU - Lin H.
PY - 2015
SP - 365
EP - 370
DO - 10.5220/0005260203650370