Breast Tissue Characterization in X-Ray and Ultrasound Images using Fuzzy Local Directional Patterns and Support Vector Machines

Mohamed Abdel-Nasser, Domenec Puig, Antonio Moreno, Adel Saleh, Joan Marti, Luis Martin, Anna Magarolas

2015

Abstract

Accurate breast mass detection in mammographies is a difficult task, especially with dense tissues. Although ultrasound images can detect breast masses even in dense breasts, they are always corrupted by noise. In this paper, we propose fuzzy local directional patterns for breast mass detection in X-ray as well as ultrasound images. Fuzzy logic is applied on the edge responses of the given pixels to produce a meaningful descriptor. The proposed descriptor can properly discriminate between mass and normal tissues under different conditions such as noise and compression variation. In order to assess the effectiveness of the proposed descriptor, a support vector machine classifier is used to perform mass/normal classification in a set of regions of interest. The proposed method has been validated using the well-known mini-MIAS breast cancer database (X-ray images) as well as an ultrasound breast cancer database. Moreover, quantitative results are shown in terms of area under the curve of the receiver operating curve analysis.

References

  1. Abdel-Nasser, M., Puig, D., and Moreno, A. (2014). Improvement of mass detection in breast X-ray images using texture analysis methods. In Artificial Intelligence Research and Development: Proceedings of the 17th International Conference of the Catalan Association for Artificial Intelligence, Barcelona, Spain, volume 269, pages 159-168. IOS Press.
  2. Ahonen, T. and Pietikäinen, M. (2007). Soft histograms for local binary patterns. In Proceedings of the Finnish signal processing symposium, FINSIG, volume 5, page 1.
  3. Chang, C.-C. and Lin, C.-J. (2011). Libsvm: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27.
  4. Chen, J., Kellokumpu, V., Zhao, G., and Pietikäinen, M. (2013). Rlbp: Robust local binary pattern. In Proc. of the British Machine Vision Conference (BMVC 2013), Bristol, UK.
  5. DeSantis, C., Ma, J., Bryan, L., and Jemal, A. (2014). Breast cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 64(1):52-62.
  6. García-Manso, A., García-Orellana, C., González-Velasco, H., Gallardo-Caballero, R., and Macías-Macías, M. (2013). Study of the effect of breast tissue density on detection of masses in mammograms. Computational and Mathematical Methods in Medicine, 2013.
  7. Gonzalez, R. C. and Woods, R. E. (2002). Digital image processing. Prentice hall Upper Saddle River, New Jersey, USA.
  8. Hanley, J. A. and McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1):29-36.
  9. Jabid, T., Kabir, M. H., and Chae, O. (2010). Facial expression recognition using local directional pattern (LDP). In IEEE International Conference on Image Processing (ICIP), pages 1605-1608.
  10. Keramidas, E., Iakovidis, D., and Maroulis, D. (2011). Fuzzy binary patterns for uncertainty-aware texture representation. Electronic Letters on Computer Vision and Image Analysis, 10(1):63-78.
  11. Lokate, M., Kallenberg, M. G., Karssemeijer, N., Van den Bosch, M. A., Peeters, P. H., and Van Gils, C. H. (2010). Volumetric breast density from full-field digital mammograms and its association with breast cancer risk factors: a comparison with a threshold method. Cancer Epidemiology Biomarkers & Prevention, 19(12):3096-3105.
  12. Mohamed, M., Rashwan, H., Mertsching, B., Garcia, M., and Puig, D. (2014). Illumination-robust optical flow using local directional pattern. IEEE Transactions on Circuits and Systems for Video Technology, 24(9):1499-1508.
  13. Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):971-987.
  14. Oliver, A., Lladó, X., Freixenet, J., and Martí, J. (2007). False positive reduction in mammographic mass detection using local binary patterns. In Medical Image Computing and Computer-Assisted Intervention (MICCAI), pages 286-293. Springer.
  15. Pomponiu, V., Hariharan, H., Zheng, B., and Gur, D. (2014). Improving breast mass detection using histogram of oriented gradients. In SPIE Medical Imaging, pages 90351R-90351R. International Society for Optics and Photonics.
  16. Ramirez Rivera, A., Castillo, R., and Chae, O. (2013). Local directional number pattern for face analysis: Face and expression recognition. IEEE Transactions on Image Processing, 22(5):1740-1752.
  17. Shi, X., Cheng, H., Hu, L., Ju, W., and Tian, J. (2010). Detection and classification of masses in breast ultrasound images. Digital Signal Processing, 20(3):824- 836.
  18. Soltanian, H., Rafiee-Rad, F., and Pourabdollah-Nejad D, S. (2004). Comparison of multiwavelet, wavelet, haralick, and shape features for microcalcification classification in mammograms. Pattern Recognition, 37(10):1973-1986.
  19. Suckling, J., Parker, J., Dance, D., Astley, S., Hutt, I., Boggis, C., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S.-L., et al. (1994). The mammographic image analysis society digital mammogram database. In 2nd International Workshop on Digital Mammography, pages 375-378. Excerta Medica.
  20. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3):338-353.
  21. Zheng, Y. (2010). Breast cancer detection with Gabor features from digital mammograms. Algorithms, 3(1):44-62.
Download


Paper Citation


in Harvard Style

Abdel-Nasser M., Puig D., Moreno A., Saleh A., Marti J., Martin L. and Magarolas A. (2015). Breast Tissue Characterization in X-Ray and Ultrasound Images using Fuzzy Local Directional Patterns and Support Vector Machines . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-089-5, pages 387-394. DOI: 10.5220/0005264803870394


in Bibtex Style

@conference{visapp15,
author={Mohamed Abdel-Nasser and Domenec Puig and Antonio Moreno and Adel Saleh and Joan Marti and Luis Martin and Anna Magarolas},
title={Breast Tissue Characterization in X-Ray and Ultrasound Images using Fuzzy Local Directional Patterns and Support Vector Machines},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={387-394},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005264803870394},
isbn={978-989-758-089-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2015)
TI - Breast Tissue Characterization in X-Ray and Ultrasound Images using Fuzzy Local Directional Patterns and Support Vector Machines
SN - 978-989-758-089-5
AU - Abdel-Nasser M.
AU - Puig D.
AU - Moreno A.
AU - Saleh A.
AU - Marti J.
AU - Martin L.
AU - Magarolas A.
PY - 2015
SP - 387
EP - 394
DO - 10.5220/0005264803870394