Reliable Image Matching using Binarized Gradient Features Obtained with Multi-flash Camera
Yasunori Sakuramoto, Yuichi Kanematsu, Shuichi Akizuki, Manabu Hashimoto, Kiyotaka Watanabe, Makito Seki
2015
Abstract
In this paper, we propose an object detection method using features describing information about a concavoconvex shape of an object that are obtained by using a small camera that controls the illumination direction. A feature image containing information about the shape of the object is generated by integrating images obtained by turning on, one by one, light emitting diodes (LEDs) annularly arranged around the camera. Our method can reliably detect a texture-less object by using this feature image in the matching process. Experiments using 200 actual images confirmed that the method achieves a 97.5% recognition success rate and a 4.62 sec processing time.
References
- Akizuki, S. and Hashimoto, M. (2013). Robust matching for low-texture images based on co-occurrence of geometry-optimized pixel patterns. In Proc. QCAV, pages 113-116.
- Barrow, H., Tenenbaum, J., Bolles, R., and Wolf, H. (1977). Parametric correspondence and chamfer matching: Two new techniques for image matching. In Proc. of IJCAI, pages 659-663.
- Bay, H., Tuytelaars, T., and Gool, L. (2006). Surffspeeded up robust features. In Proc. of ECCV, pages 404-417.
- Drost, B. and Ilic, S. (2012). 3d object detection and localization using multimodal point pair features. In Proc. 3DIMPVT, pages 9-16.
- Hashimoto, M., Fujiwara, T., Koshimizu, H., Okuda, H., and Sumi, K. (2010). Extraction of unique pixels based on co-occurrence probability for high-speed template matching. In Proc. of ISOT, pages 1-6.
- Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., and Lepetit, V. (2012). Gradient response maps for real-time detection of texture-less objects. In IEEE Trans. on PAMI, pages 876-888.
- Hinterstoisser, S., Lepetit, V., Ilic, S., Fua, P., and Navab, N. (2010). Dominant orientation templates for realtime detection of texture-less objects. In Proc. CVPR, pages 2257-2264.
- Lowe, D. (2004). Distinctive image features from scaleinvariant keypoints. In IJCV, volume 60, pages 91- 110.
- Raskar, R., Tan, K., Feris, R., Yu, J., and M.Turk (2004). Non-photorealistic camera: Depth edge detection and stylized rendering using multi-flash imaging. In ACM Trans. on Graphics, volume 23, pages 679-688.
- Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). ORB : An efficient alternative to SIFT or SURF. In Proc. of ICCV, pages 2564-2571.
- Tombari, F., Franchi, A., and Stefano, L. D. (2013). Bold features to detect texture-less objects. In Proc. of ICCV, pages 1265-1272.
Paper Citation
in Harvard Style
Sakuramoto Y., Kanematsu Y., Akizuki S., Hashimoto M., Watanabe K. and Seki M. (2015). Reliable Image Matching using Binarized Gradient Features Obtained with Multi-flash Camera . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-090-1, pages 260-264. DOI: 10.5220/0005267902600264
in Bibtex Style
@conference{visapp15,
author={Yasunori Sakuramoto and Yuichi Kanematsu and Shuichi Akizuki and Manabu Hashimoto and Kiyotaka Watanabe and Makito Seki},
title={Reliable Image Matching using Binarized Gradient Features Obtained with Multi-flash Camera},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={260-264},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005267902600264},
isbn={978-989-758-090-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2015)
TI - Reliable Image Matching using Binarized Gradient Features Obtained with Multi-flash Camera
SN - 978-989-758-090-1
AU - Sakuramoto Y.
AU - Kanematsu Y.
AU - Akizuki S.
AU - Hashimoto M.
AU - Watanabe K.
AU - Seki M.
PY - 2015
SP - 260
EP - 264
DO - 10.5220/0005267902600264