Supporting Event-based Geospatial Anomaly Detection with Geovisual Analytics

Orland Hoeber, Monjur Ul Hasan

2015

Abstract

Collecting multiple geospatial datasets that describe the same real-world events can be useful in monitoring and enforcement situations (e.g., independently tracking where a fishing vessel travelled and where it reported to have fished). While finding the obvious anomalies between such datasets may be a simple task, discovering more subtle inconsistencies can be challenging when the datasets describe many events that cover large geographic and temporal ranges. This paper presents a geovisual analytics approach to this problem domain, automatically extracting potential event anomalies from the data, visualizing these on a map, and providing interactive filtering tools to allow expert analysts to discover and analyze patterns that are of interest. A case study is presented, illustrating the value of the approach for discovering anomalies between commercial fishing vessel movement data and their reported fishing locations. Field trial evaluations confirm the benefits of this geovisual analytics approach for supporting real-world data analyst needs.

References

  1. Andrienko, G., Andrienko, N., and Heurich, M. (2011). An event-based conceptual model for context-aware movement analysis. International Journal of Geographical Information Science, 25(9):1347-1370.
  2. Andrienko, G., Andrienko, N., Jankowski, P., Keim, D., Kraak, M.-J., MacEachren, A., and Wrobel, S. (2007a). Geovisual analytics for spatial decision support: Setting the research agenda. International Journal of Geographical Information Science, 21(8):839- 857.
  3. Andrienko, G., Andrienko, N., and Wrobel, S. (2007b). Visual analytics tools for analysis of movement data. ACM SIGKDD Explorations Newsletter, 9(2):38-46.
  4. Andrienko, N., Andrienko, G., and Gatalsky, P. (2000). Supporting visual exploration of object movement. In Proceedings of the Working Conference on Advanced Visual Interfaces, pages 217-220,315.
  5. Andrienko, N., Andrienko, G., Stange, H., Liebig, T., and Hecker, D. (2012). Visual analytics for understanding spatial situations from episodic movement data. Künstliche Intelligenz, 26(3):241-251.
  6. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3):319-340.
  7. Dykes, J. A. and Mountain, D. M. (2003). Seeking structure in records of spatio-temporal behaviour: Visualization issues, efforts and applications. Computational Statistics & Data Analysis, 43(4):581-603.
  8. Enguehard, R. A., Hoeber, O., and Devillers, R. (2013). Interactive exploration of movement data: A case study of geovisual analytics for fishing vessel analysis. Information Visualization, 12(1):65-84.
  9. Hering, E. (1964). Outlines of a Theory of Light Sense. Harvard University Press, Cambridge, MA, USA.
  10. Hoeber, O., Wilson, G., Harding, S., Enguehard, R., and Devillers, R. (2011). Exploring geo-temporal differences using GTdiff. In Proceedings of the Pacific Visualization Symposium, pages 139-146.
  11. Jänicke, S., Heine, C., Stockmann, R., and Scheuermann, G. (2012). Comparative visualization of geospatialtemporal data. In Proceedings of the International Conference on Information Visualization Theory and Applications, pages 613-625.
  12. Johansson, S. and Jern, M. (2007). GeoAnalytics visual inquiry and filtering tools in parallel coordinates plots. In Proceedings of ACM International Symposium on Geographic Information Systems, pages 33:1-33:8.
  13. Kapler, T. and Wright, W. (2005). Geotime information visualization. Information Visualization, 4(2):136-146.
  14. Keim, D., Andrienko, G., Fekete, J.-D., Görg, C., Kohlhammer, J., and Melanc¸on, G. (2008). Visual analytics: Definition, process, and challenges. In Kerren, A., Stasko, J. T., Fekete, J.-D., and North, C., editors, Information Visualization: Human-Centered Issues and Perspectives, pages 154-175. Springer-Verlag, Berlin, Heidelberg.
  15. Koffka, K. (1935). Principles of Gestalt Psychology. Harcourt Brace and Company, New York.
  16. Kraak, M.-J. (2003). The space-time cube revisited from a geovisualization perspective. In Proceedings of International Cartographic Conference, pages 1988-1995.
  17. Kraak, M.-J. and de Vlag, D. E. V. (2007). Understanding spatiotemporal patterns: visual ordering of space and time. Cartographica, 42(2):153-161.
  18. Lam, H., Bertini, E., Isenberg, P., Plaisant, C., and Carpendale, S. (2012). Empirical studies in information visualization: seven scenarios. IEEE Transactions on Visualization and Computer Graphics, 18(9):1520- 1536.
  19. Lundblad, P., Eurenius, O., and Heldring, T. (2009). Interactive visualization of weather and ship data. In Proceedings of the International Conference on Information Visualisation, pages 379-386.
  20. MacEachren, A. M. and Kraak, M.-J. (2001). Research challenges in geovisualization. Cartography and Geographic Information Science, 28(1):3-12.
  21. Maciejewski, R., Tyner, B., Jang, Y., Zheng, C., Nehme, R. V., Ebert, D. S., Cleveland, W. S., Ouzzani, M., Grannis, S. J., and Glickman, L. T. (2007). LAHVA: Linked animal-human health visual analytics. In Proceedings of the IEEE Symposium on Visual Analytics Science and Technology, pages 27-34.
  22. Mandiak, M., Shah, P., Kim, Y., and Kesavadas, T. (2005). Development of an integrated GUI framework for post-disaster data fusion visualization. In Proceedings of the International Conference on Information Fusion, volume 2, pages 1131-1137.
  23. Palmer, S. and Rock, I. (1994). Rethinking perceptual organization: The role of uniform connectedness. Psychonomic Bulletin & Review, 1(1):29-55.
  24. Plaisant, C. (2004). The challenge of information visualization evaluation. In Proceedings of the Working Conference on Advanced Visual Interfaces, pages 109- 116.
  25. Treinish, L. A. (2000). Visual data fusion for applications of high-resolution numerical weather prediction. In Proceedings of the Conference on Visualization, pages 477-480.
  26. Ware, C. (2004). Information Visualization: Perception for Design. Elseiver, San Francisco, second edition.
Download


Paper Citation


in Harvard Style

Hoeber O. and Ul Hasan M. (2015). Supporting Event-based Geospatial Anomaly Detection with Geovisual Analytics . In Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015) ISBN 978-989-758-088-8, pages 17-28. DOI: 10.5220/0005268000170028


in Bibtex Style

@conference{ivapp15,
author={Orland Hoeber and Monjur Ul Hasan},
title={Supporting Event-based Geospatial Anomaly Detection with Geovisual Analytics},
booktitle={Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015)},
year={2015},
pages={17-28},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005268000170028},
isbn={978-989-758-088-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015)
TI - Supporting Event-based Geospatial Anomaly Detection with Geovisual Analytics
SN - 978-989-758-088-8
AU - Hoeber O.
AU - Ul Hasan M.
PY - 2015
SP - 17
EP - 28
DO - 10.5220/0005268000170028