Depth Camera to Improve Segmenting People in Indoor Environments - Real Time RGB-Depth Video Segmentation

Arnaud Boucher, Olivier Martinot, Nicole Vincent

2015

Abstract

The paper addresses the problem of people extraction in a closed context in a video sequence including colour and depth information. The study is based on low cost depth captor included in products such as Kinect or Asus devices that contain a couple of cameras, colour and depth cameras. Depth cameras lack precision especially where a discontinuity in depth occur and some times fail to give an answer. Colour information may be ambiguous to discriminate between background and foreground. This made us use first depth information to achieve a coarse segmentation that is improved with colour information. Furthermore, color information is only used when a classification in two classes of fore/background pixels is clear enough. The developed method provides a reliable and robust segmentation and a natural visual rendering, while maintaining a real time processing.

References

  1. Abramov A., Pauwels K., Papon J., Worgotter F., Babette Dellen B., 2012. Depth-supported real-time video segmentation with the kinect, in Workshop on the Applications of Computer Vision.
  2. Alempijevic A., Kodagoda S., Dissanayake G.,2007. Sensor Registration for Robotic Applications, in proceedings of 6th International Conference on Field and Service Robotics, Chamonix, France.
  3. Barnich O., Van Droogenbroeck M., 2011. ViBe: a universal background subtraction algorithm for video sequences, In IEEE Transactions on Image Processing, vol 20(6), pp. 1709-1724.
  4. Bleiweiss A., Werman M., 2009. Fusing time-of-flight depth and color for real-time segmentation and tracking, In Conference on Dynamic 3D Imaging, pp. 58-69.
  5. Camplani M., Salgado L., 2014. Background foreground segmentation with RGB-D Kinect data: An efficient combination of classifiers, Journal of Visual Communication and Image Representation, vol 25(1), pp. 122-136.
  6. Crabb C., Tracey R., Puranik A., Davis J., 2008. Real-time foreground segmentation via range and color imaging”, In IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1-5.
  7. Do M., Lin D., Meyer G., Nguyen Q., Patel S., 2014. Systems and methods for accurate user foreground video extraction, U.S. Patent Application 13/083,470.
  8. Elgammal A., Duraiswami R., Harwood D., Davis L., 2002. Background and foreground modeling using non-parametric kernel density estimation for visual surveillance, In Proceedings of the IEEE, vol 90, pp.1151-1163.
  9. Fernandez-Sanchez E., Diaz J., Ros E., 2013. Background Subtraction Based on Color and Depth Using Active Sensors. Sensors 13 (7), p. 8895-8915.
  10. Frick A., Franke M., Koch R., 2011. Time-consistent foreground segmentation of dynamic content from color and depth video, Pattern Recognition, Elsevier, pp. 296-305.
  11. Gallego J., Pardas M., 2014. Region based foreground segmentation combining color and depth sensors via logarithmic opinion pool decision, Journal of Visual Communication and Image Representation, vol 25(1), pp.184-194.
  12. Jourdheuil L., Allezard N., Château T. and Chesnais T., 2012. Heterogeneous adaboost with realtime constraints - application to the detection of pedestrians by stereovision, In Proceedings VISAPP'12, pp. 539-546.
  13. Lefevre T., Dorizzi B., Garcia-Salicetti S., Lempérière N., Belardi S., 2013. Effective elliptic fitting for iris normalization. Computer Vision and Image Understanding 117(6): 732-745.
  14. Levin, A., Rav-Acha, A., Lischinski, D., 2008. Spectral matting. IEEE transactions on pattern analysis and machine intelligence, 30(10), pp.1699-712.
  15. Maddalena I., Petrosino A., 2008. A self-organizing approach to background subtraction for visual surveillance applications, IEEE Transactions on Image Processing 17, pp. 1168-1177.
  16. Maimone A., Bidwell J., Peng K., Fuchs H., 2012. Enhanced personal autostereoscopic telepresence system using commodity depth cameras. Computers & Graphics 36 (7) p. 791-807.
  17. Richtsfield A., Morwald T., Prankl J., Balzer J., 2012. Towards scene understanding - object segmentation using using RGBD-images, in Computer Vision Winter Workshop.
  18. Schiller I., Koch R., 2011. Improved video segmentation by adaptive combination of depth keying and mixtureof-Gaussians, Image Analysis, pp. 59-68.
  19. Serra J., 1982. Image Analysis and Mathematical Morphology, Academic Press, London.
  20. Soille P., 1989. Morphological Image Analysis : Principles and Applications. Springer-Verlag.
  21. Stormer A., Hofmann M., Rigoll G., 2010. Depth gradient based segmentation of overlapping foreground objects in range images, In proceedings of IEEE 13th Conference on Information Fusion, pp.1-4.
  22. Stückler J., Behnke S., 2010. Combining depth and color cues for scale and Viewpoint Invariant object segmentation and recognition using Random Forests, In proceedings International Conference on Intelligent Robots and Systems (IROS), pp. 4566-4571.
  23. Tucker C., 1979.Red and photographic infrared linear combinations for monitoring vegetation, Remote Sensing of Environment Volume 8, Issue 2, May 1979, Pages 127-150.
  24. Wang J., Cohen M., 2007. Image and Video Matting : A Survey. Computer Graphics and Vision, pp.1-78.
  25. Wang L., Zhang C., Yang R., Zhang C., 2010. Tof cut: towards robust real-time foreground extraction using a time-of-flight camera, Conference 3D PVT.
  26. Wu Q., Boulanger P., Bischof W., 2008. Robust real-time bi-layer video segmentation using infrared video, In proceedings of Conference on Computer and Robot Vision (CRV), pp. 87-94.
  27. Xia L., Chen C., Aggarwal J., 2011. Human detection using Depth information by Kinect, IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 15-22.
Download


Paper Citation


in Harvard Style

Boucher A., Martinot O. and Vincent N. (2015). Depth Camera to Improve Segmenting People in Indoor Environments - Real Time RGB-Depth Video Segmentation . In Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015) ISBN 978-989-758-091-8, pages 55-62. DOI: 10.5220/0005269700550062


in Bibtex Style

@conference{visapp15,
author={Arnaud Boucher and Olivier Martinot and Nicole Vincent},
title={Depth Camera to Improve Segmenting People in Indoor Environments - Real Time RGB-Depth Video Segmentation},
booktitle={Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)},
year={2015},
pages={55-62},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005269700550062},
isbn={978-989-758-091-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Computer Vision Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2015)
TI - Depth Camera to Improve Segmenting People in Indoor Environments - Real Time RGB-Depth Video Segmentation
SN - 978-989-758-091-8
AU - Boucher A.
AU - Martinot O.
AU - Vincent N.
PY - 2015
SP - 55
EP - 62
DO - 10.5220/0005269700550062