Categorize, Cluster & Classify - The 3C Strategy Applied to Alzheimer's Disease as a Case Study

Alexis Mitelpunkt, Tal Galili, Netta Shachar, Mira Marcus-Kalish, Yoav Benjamini

2015

Abstract

Health informatics is facing many challenges these days, in analysing current medical data and especially hospital data towards understanding disease mechanisms, predicting the course of a disease or assist in targeting potential therapeutic options. Alongside the promises, many challenges emerge. Among the major ones we identify: current diagnosis criteria that are too vague to capture disease manifestation; the irrelevance of personalized medicine when only heterogeneous classes of patients are available, and how to properly process big data to avoid false claims. We offer a 3C strategy that starts from the medical knowledge, categorizing the available set of features into three types: the patients' assigned disease diagnosis, clinical measurements and potential biological markers, proceeds to an unsupervised learning process targeted to create new disease diagnosis classes, and finally, classifying the newly proposed diagnosis classes utilizing the potential biological markers. In order to allow the evaluation and comparison of different algorithmic components of the 3C strategy a simulation model was built and put to use. Our strategy, developed as part of the medical informatics work package at the EU Human Brain flagship Project strives to connect between potential biomarkers, and more homogeneous classes of disease manifestation that are expressed by meaningful features. We demonstrate this strategy using data from the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI).

References

  1. American Psychiatric Association. (2013). DSM-5 criteria for major neurocognitive disorder due to AD (Fifth Edit.). Arlington, VA.
  2. Sonnen, J. A., Montine, K. S., Quinn, J. F., Kaye, J. A., Breitner, J. C. S., & Montine, T. J. (2008). Biomarkers for cognitive impairment and dementia in elderly people. Lancet Neurology, 7(8), 704-14. doi:10.1016/ S1474-4422(08)70162-5.
  3. Evans, M. C., Barnes, J., Nielsen, C., Kim, L. G., Clegg, S. L., Blair, M., Fox, N. C. (2010). Volume changes in Alzheimer's disease and mild cognitive impairment: cognitive associations. European Radiology, 20(3), 674-82. doi:10.1007/s00330-009-1581-5.
  4. Gupta, V. B., Laws, S. M., Villemagne, V. L., Ames, D., Bush, A. I., Ellis, K. A., Martins, R. N. (2011). Plasma apolipoprotein e and Alzheimer disease risk: The AIBL study of aging. Neurology, 76(12), 1091- 1098.
  5. Hinrichs, C., Singh, V., Xu, G., & Johnson, S. C. (2011). Predictive markers for AD in a multi-modality framework: An analysis of MCI progression in the ADNI population. NeuroImage, 55(2), 574-589.
  6. Kohannim, O., Hua, X., Hibar, D. P., Lee, S., Chou, Y.- Y., Toga, A. W., Thompson, P. M. (2010). Boosting power for clinical trials using classifiers based on multiple biomarkers. Neurobiology of Aging, 31(8), 1429-42. doi: 10.1016/j.neurobiolaging.2010.04.022.
  7. Langbaum, J. B. S., Chen, K., Lee, W., Reschke, C., Fleisher, A. S., Alexander, G. E., Reiman, E. M. (2010). categorial and correlational analyses of baseline flourodeoxyglucose positron emission tomography images from the Alzheimer's disease NeuroImage, 45(4), 1107-1116. doi:10.1016/ j.neuroimage.2008.12.072.
  8. Liaw, A., & Wiener, M. (2002). Classification and Regression by randomForest. R News, 2(December), 18-22.
  9. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2013). Cluster Analysis Basics and Extensions. R package version 1.14.4. CRAN. Retrieved from http://cran.r-project.org/web/packages/ cluster/index.html.
  10. Malterud, K. (2001). The art and science of clinical knowledge: evidence beyond measures and numbers. Lancet, 358(9279), 397-400. doi:10.1016/S0140-6736 (01)05548-9.
  11. Revelle, W. (2010). psych: Procedures for psychological, psychometric, and personality research. Northwestern University: Evanston, Illinois, 0-90.
  12. Shadlen, Marie-Florence, MD; Larson, Eric B, MD, M. (2014). UpToDate: Evaluation of cognitive impairment and dementia. Retrieved from http://www. uptodate.com/contents/evaluation-of-cognitiveimpairment-and-dementia.
  13. Sunderland, T., Linker, G., Mirza, N., Putnam, K. T., Friedman, D. L., Kimmel, L. H., Cohen, R. M. (n.d.). Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. JAMA?: The Journal of the American Medical Association, 289(16), 2094-103. doi:10.1001/jama. 289.16.2094.
  14. Tibshirani, Robert; Walther, G. H. (2001). Estimating the number of clusters in data set via the gap statistic. Journal of the Royal Statistical Society: Series B, part 2.
  15. Walhovd, K. B., Fjell, a M., Brewer, J., McEvoy, L. K., Fennema-Notestine, C., Hagler, D. J., Dale, a M. (2010). Combining MR imaging, positron-emission tomography, and CSF biomarkers in the diagnosis and prognosis of Alzheimer disease. AJNR. American Journal of Neuroradiology, 31(2), 347-54. doi:10. 3174/ajnr.A1809.
  16. Weiner, M. W., Veitch, D. P., Aisen, P. S., Beckett, L. a, Cairns, N. J., Green, R. C., Trojanowski, J. Q. (2013). The Alzheimer's Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimer's & Dementia?: The Journal of the Alzheimer's Association, 9(5), e111-94. doi:10.1016/ j.jalz.2013.05.1769.
  17. Zhang, Daoqiuang; Shen, D. (2013). Multi modal multi task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. Neuroimage, 59(2), 895-907. doi:10.1016/j.neuro image.2011.09.069.
Download


Paper Citation


in Harvard Style

Mitelpunkt A., Galili T., Shachar N., Marcus-Kalish M. and Benjamini Y. (2015). Categorize, Cluster & Classify - The 3C Strategy Applied to Alzheimer's Disease as a Case Study . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015) ISBN 978-989-758-068-0, pages 566-573. DOI: 10.5220/0005275705660573


in Bibtex Style

@conference{healthinf15,
author={Alexis Mitelpunkt and Tal Galili and Netta Shachar and Mira Marcus-Kalish and Yoav Benjamini},
title={Categorize, Cluster & Classify - The 3C Strategy Applied to Alzheimer's Disease as a Case Study},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015)},
year={2015},
pages={566-573},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005275705660573},
isbn={978-989-758-068-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015)
TI - Categorize, Cluster & Classify - The 3C Strategy Applied to Alzheimer's Disease as a Case Study
SN - 978-989-758-068-0
AU - Mitelpunkt A.
AU - Galili T.
AU - Shachar N.
AU - Marcus-Kalish M.
AU - Benjamini Y.
PY - 2015
SP - 566
EP - 573
DO - 10.5220/0005275705660573