Evaluation of Threshold-based Fall Detection on Android Smartphones
Tobias Gimpel, Simon Kiertscher, Alexander Lindemann, Bettina Schnor, Petra Vogel
2015
Abstract
This paper evaluates threshold-based fall detection algorithms which use data from acceleration sensors that are part of the current smartphone technology. Different detection algorithms are published in the literature with different threshold values. This paper presents the evaluation of 5 different algorithms which are suited for Android smartphones. In contradiction to prior work, our experiments indicate that the Free Fall detection Phase is necessary for a low False Positive Rate. Further, we present an empirical evaluation of currently available fall detection apps in the Google Play store.
References
- Bourke, A., O'Brien, J., and Lyons, G. (2007). Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait & Posture, 26:194-199.
- Brickhouse. Brickhouse alert. www.brickhousealert.com/personal-emergencymedical-alarm.html; accessed October, 2014.
- Dai, J., Bai, X., Yang, Z., Shen, Z., and Xuan, D. (2010). PerFallD: A pervasive fall detection system using mobile phones. In PerCom Workshops'10, pages 292- 297.
- Fudickar, S., Lindemann, A., and Schnor, B. (2014). Threshold-based fall detection on smart phones. In HEALTHINF 2014, 7th International Conference on Health Informatics, Angers, France.
- Gimpel, T. (2014). Anpassung eines Algorithmus zur aktiven Sturzerkennung für Android-Smartphones. Bachelor thesis, University of Potsdam.
- Hwang, S.-Y., Ryu, M.-H., Yang, Y.-S., and Lee, N.-B. (2012). Fall Detection with Three-Axis Accelerometer and Magnetometer in a Smartphone. In International Conference on Computer Science and Technology, pages 65-70.
- Karth, C. (2012). Fusion von Sensordaten zur robusten Sturzdetektion im Bereich Assisted Living. Master's thesis, University of Potsdam.
- Mehner, S., Klauck, R., and Koenig, H. (2013). Locationindependent fall detection with smartphone. In Proceedings of the 6th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA 7813, New York, NY, USA. ACM.
- Mellone, S., Tacconi, C., Schwickert, L., Klenk, J., Becker, C., and Chiari, L. (2012). Smartphone-based solutions for fall detection and prevention: the FARSEEING approach. Zeitschrift für Gerontologie und Geriatrie, 8:722-727.
- Sposaro, F. and Tyson, G. (2009). iFall: an Android application for fall monitoring and response. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009:6119-6122.
Paper Citation
in Harvard Style
Gimpel T., Kiertscher S., Lindemann A., Schnor B. and Vogel P. (2015). Evaluation of Threshold-based Fall Detection on Android Smartphones . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015) ISBN 978-989-758-068-0, pages 598-604. DOI: 10.5220/0005280805980604
in Bibtex Style
@conference{healthinf15,
author={Tobias Gimpel and Simon Kiertscher and Alexander Lindemann and Bettina Schnor and Petra Vogel},
title={Evaluation of Threshold-based Fall Detection on Android Smartphones},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015)},
year={2015},
pages={598-604},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005280805980604},
isbn={978-989-758-068-0},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2015)
TI - Evaluation of Threshold-based Fall Detection on Android Smartphones
SN - 978-989-758-068-0
AU - Gimpel T.
AU - Kiertscher S.
AU - Lindemann A.
AU - Schnor B.
AU - Vogel P.
PY - 2015
SP - 598
EP - 604
DO - 10.5220/0005280805980604