Design of Communication and Control for Swarms of Aquatic Surface Drones

Anders Lyhne Christensen, Sancho Oliveira, Octavian Postolache, Maria João de Oliveira, Susana Sargento, Pedro Santana, Luis Nunes, Fernando Velez, Pedro Sebastião, Vasco Costa, Miguel Duarte, Jorge Gomes, Tiago Rodrigues, Fernando Silva

2015

Abstract

The availability of relatively capable and inexpensive hardware components has made it feasible to consider large-scale systems of autonomous aquatic drones for maritime tasks. In this paper, we present the CORATAM and HANCAD projects, which focus on the fundamental challenges related to communication and control in swarms of aquatic drones. We argue for: (i) the adoption of a heterogeneous approach to communication in which a small subset of the drones have long-range communication capabilities while the majority carry only short-range communication hardware, and (ii) the use of decentralized control to facilitate inherent robustness and scalability. A heterogeneous communication system and decentralized control allow for the average drone to be kept relatively simple and therefore inexpensive. To assess the proposed methodology, we are currently building 25 prototype drones from off-the-shelf components. We present the current hardware designs and discuss the results of simulation-based experiments involving swarms of up to 1,000 aquatic drones that successfully patrolled a 20 km-long strip for 24 hours.

References

  1. Akyildiz, I. F., Wang, X., and Wang, W. (2005). Wireless mesh networks: a survey. Computer Networks, 47(4):445-487.
  2. Brambilla, M., Ferrante, E., Birattari, M., and Dorigo, M. (2013). Swarm robotics: a review from the swarm engineering perspective. Swarm Intelligence, 7(1):1- 41.
  3. Carta, C. L. (2013). Rapporto annuale. Technical report, Corpo della Guardia di Finanza, Rome, Italy.
  4. Chlamtac, I., Conti, M., and Liu, J. J.-N. (2003). Mobile ad hoc networking: imperatives and challenges. Ad Hoc Networks, 1(1):13-64.
  5. Christensen, A. L. and Dorigo, M. (2006). Incremental evolution of robot controllers for a highly integrated task. In 9th International Conference on Simulation of Adaptive Behaviour (SAB), pages 473-484. Springer, Berlin, Germany.
  6. Christensen, A. L., O'Grady, R., and Dorigo, M. (2009). From fireflies to fault tolerant swarms of robots. IEEE Transactions on Evolutionary Computation, 13(4):1- 12.
  7. Clark, C. M., Olstad, C. S., Buhagiar, K., and Gambin, T. (2008). Archaeology via underwater robots: Mapping and localization within maltese cistern systems. In 10th International Conference on Control, Automation, Robotics and Vision (ICARCV), pages 662-667. IEEE Press, Piscataway, NJ.
  8. Clegg, D. and Peterson, M. (2003). User operational evaluation system of unmanned underwater vehicles for very shallow water mine countermeasures. In OCEANS 2003, pages 1417-1423. IEEE Press, Piscataway, NJ.
  9. Crespi, V., Galstyan, A., and Lerman, K. (2008). Topdown vs bottom-up methodologies in multi-agent system design. Autonomous Robots, 24(3):303-313.
  10. Dorigo, M., Floreano, D., Gambardella, L. M., Mondada, F., Nolfi, S., Baaboura, T., Birattari, M., Bonani, M., Brambilla, M., Brutschy, A., et al. (2013). Swarmanoid: a novel concept for the study of heterogeneous robotic swarms. IEEE Robotics & Automation Magazine, 20(4):60-71.
  11. Dorigo, M., Trianni, V., S¸ahin, E., Groß, R., Labella, T. H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., et al. (2004). Evolving selforganizing behaviors for a swarm-bot. Autonomous Robots, 17(2-3):223-245.
  12. Douglas-Westwood (2012). The world AUV market report 2012-2016. Technical report, Douglas-Westwood Ltd. Faversham, UK.
  13. Duarte, M., Oliveira, S. M., and Christensen, A. L. (2014a). Evolution of hybrid robotic controllers for complex tasks. Journal of Intelligent and Robotic Systems. In press.
  14. Duarte, M., Oliveira, S. M., and Christensen, A. L. (2014b). Hybrid control for large swarms of aquatic drones. In 14th International Conference on the Synthesis & Simulation of Living Systems (ALIFE), pages 785- 792. MIT Press, Cambridge, MA.
  15. Floreano, D. and Keller, L. (2010). Evolution of adaptive behaviour in robots by means of Darwinian selection. PLoS Biology, 8(1):e1000292.
  16. Furukawa, T., Bourgault, F., Lavis, B., and Durrant-Whyte, H. F. (2006). Recursive Bayesian search-and-tracking using coordinated UAVs for lost targets. In 2006 IEEE International Conference on Robotics and Automation (ICRA), pages 2521-2526. IEEE Press, Piscataway, NJ.
  17. Gomes, J., Mariano, P., and Christensen, A. L. (2014). Avoiding convergence in cooperative coevolution with novelty search. In 13th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 1149-1156, IFAAMAS, Richland, SC.
  18. Gomez, F. and Miikkulainen, R. (1997). Incremental evolution of complex general behavior. Adaptive Behavior, 3-4(5):317-342.
  19. Hauert, S., Zufferey, J., and Floreano, D. (2009). Evolved swarming without positioning information: an application in aerial communication relay. Autonomous Robots, 26(1):21-32.
  20. Jakobi, N. (1997). Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive Behavior, 6(2):325-368.
  21. Ko, Y.-B. and Vaidya, N. H. (2000). Location-aided routing (lar) in mobile ad hoc networks. Wireless Networks, 6(4):307-321.
  22. Lane, D. M., Davies, J. B. C., Casalino, G., Bartolini, G., Cannata, G., Veruggio, G., Canals, M., Smith, C., O'Brien, D. J., Pickett, M., et al. (1997). Amadeus: advanced manipulation for deep underwater sampling. IEEE Robotics & Automation Magazine, 4(4):34-45.
  23. Lee, W.-P. (1999). Evolving complex robot behaviors. Information Sciences, 121(1-2):1-25.
  24. Lindsey, Q., Mellinger, D., and Kumar, V. (2012). Construction with quadrotor teams. Autonomous Robots, 33(3):323-336.
  25. Lutterbeck, D. (2006). Policing migration in the mediterranean. Mediterranean Politics, 11(1):59-82.
  26. Manley, J. E. (2008). Unmanned surface vehicles, 15 years of development. In OCEANS 2008, pages 1-4. IEEE Press, Piscataway, NJ.
  27. Monzini, P. (2007). Sea-border crossings: The organization of irregular migration to italy. Mediterranean Politics, 12(2):163-184.
  28. Nelson, A. L., Barlow, G. J., and Doitsidis, L. (2009). Fitness functions in evolutionary robotics: A survey and analysis. Robotics and Autonomous Systems, 57(4):345-370.
  29. Nolfi, S. and Floreano, D. (2000). Evolutionary robotics: The biology, intelligence, and technology of selforganizing machines. MIT Press, Cambridge, MA.
  30. Pinto, E., Marques, F., Mendonc¸a, R., Lourenc¸o, A., Santana, P., and Barata, J. (2014). An autonomous surface-aerial marsupial robotic team for riverine environmental monitoring: Benefiting from coordinated aerial, underwater, and surface level perception. In 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE Press, Piscataway, NJ. In press.
  31. Plueddemann, A., Packard, G., Lord, J., and Whelan, S. (2008). Observing arctic coastal hydrography using the REMUS AUV. In 2008 IEEE/OES Conference on Autonomous Underwater Vehicles (AUV), pages 1-4. IEEE Press, Piscataway, NJ.
  32. Rodrigues, T., Duarte, M., Oliveira, S. M., and Christensen, A. L. (2015). Beyond onboard sensors in robotic swarms: Local collective sensing through situated communication. In 7th International Conference on Agents and Artificial Intelligence (ICAART). SciTePress, Lisbon, Portugal. In press.
  33. Silva, F., Duarte, M., Oliveira, S. M., Correia, L., and Christensen, A. L. (2014). The case for engineering the evolution of robot controllers. In 14th International Conference on the Synthesis & Simulation of Living Systems (ALIFE), pages 703-710. MIT Press, Cambridge, MA.
  34. Silva, F., Urbano, P., Oliveira, S., and Christensen, A. L. (2012). odNEAT: An algorithm for distributed online, onboard evolution of robot behaviours. In 13th International Conference on the Simulation & Synthesis of Living Systems (ALIFE), pages 251-258. MIT Press, Cambridge, MA.
  35. Sperati, V., Trianni, V., and Nolfi, S. (2008). Evolving coordinated group behaviours through maximisation of mean mutual information. Swarm Intelligence, 2(2- 4):73-95.
  36. Upton, E. and Halfacree, G. (2013). Raspberry Pi user guide. John Wiley & Sons, Hoboken, NJ.
  37. Urzelai, J., Floreano, D., Dorigo, M., and Colombetti, M. (1998). Incremental robot shaping. Connection Science, 10(3-4):341-360.
  38. Watson, R., Ficici, S., and Pollack, J. (1999). Embodied evolution: Embodying an evolutionary algorithm in a population of robots. In 1999 IEEE Congress on Evolutionary Computation (CEC), pages 335-342. IEEE Press, Piscataway, NJ.
  39. Whiteson, S., Kohl, N., Miikkulainen, R., and Stone, P. (2005). Evolving keepaway soccer players through task decomposition. Machine Learning, 59(1):5-30.
  40. Winfield, A. F. (2000). Distributed sensing and data collection via broken ad hoc wireless connected networks of mobile robots. In Distributed Autonomous Robotic Systems 4 (DARS), pages 273-282. Springer, Berlin, Germany.
  41. Xu, G., Shen, W., and Wang, X. (2014). Applications of wireless sensor networks in marine environment monitoring: A survey. Sensors, 14(9):16932-16945.
  42. Yan, R., Pang, S., Sun, H., and Pang, Y. (2010). Development and missions of unmanned surface vehicle. Journal of Marine Science and Application, 9:451-457.
Download


Paper Citation


in Harvard Style

Lyhne Christensen A., Oliveira S., Postolache O., João de Oliveira M., Sargento S., Santana P., Nunes L., Velez F., Sebastião P., Costa V., Duarte M., Gomes J., Rodrigues T. and Silva F. (2015). Design of Communication and Control for Swarms of Aquatic Surface Drones . In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-758-074-1, pages 548-555. DOI: 10.5220/0005281705480555


in Bibtex Style

@conference{icaart15,
author={Anders Lyhne Christensen and Sancho Oliveira and Octavian Postolache and Maria João de Oliveira and Susana Sargento and Pedro Santana and Luis Nunes and Fernando Velez and Pedro Sebastião and Vasco Costa and Miguel Duarte and Jorge Gomes and Tiago Rodrigues and Fernando Silva},
title={Design of Communication and Control for Swarms of Aquatic Surface Drones},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2015},
pages={548-555},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005281705480555},
isbn={978-989-758-074-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - Design of Communication and Control for Swarms of Aquatic Surface Drones
SN - 978-989-758-074-1
AU - Lyhne Christensen A.
AU - Oliveira S.
AU - Postolache O.
AU - João de Oliveira M.
AU - Sargento S.
AU - Santana P.
AU - Nunes L.
AU - Velez F.
AU - Sebastião P.
AU - Costa V.
AU - Duarte M.
AU - Gomes J.
AU - Rodrigues T.
AU - Silva F.
PY - 2015
SP - 548
EP - 555
DO - 10.5220/0005281705480555